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Abstract
This study presents an intelligent microcontroller-based diagnostic tool and application de-
signed to enhance fault detection accuracy and efficiency in iPhone motherboards, utiliz-
ing power consumption data and deep learning (DL) for real-time diagnostics. Integrating
an RP2040 microcontroller and INA226 current sensor, the tool captures power patterns
during boot-up, a method applicable across embedded systems and robotics for predictive
fault analysis and maintenance. The tool, deployed in phone repair centers, has generated a
comprehensive dataset of over 1,600 iPhone 6s devices with faults linked to 12 distinct power
rails. Various deep learning models, including Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) networks, were evaluated, with the LSTM achieving the
highest accuracy (99%) and F1-score (0.997) for precise fault classification. This diagnostic
application communicates with a central server, enabling a scalable and automated frame-
work suitable for robotics and intelligent systems requiring power diagnostics. By intro-
ducing DL-based power consumption analysis, this study pioneers an approach with broad
implications for intelligent maintenance in embedded and robotic systems. Our findings
offer a foundation for faster, automated, and reliable diagnostics, potentially advancing fault
management in robotic applications and other intelligent devices reliant on precise power
monitoring and control.
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1. INTRODUCTION

The purpose of this research is to advance the understanding of mobile device fault diagnosis in
order to facilitate the identification of motherboard defects in mobile devices, particularly iPhones.
The investigation devised an effective approach for identifying the specific defective regions of the
iPhone main motherboards with greater precision and in a shorter amount of time. iPhones that
are unable to operate (not turning on) are the primary focus of this investigation. To realize the
aforementioned goal, time series analysis in conjunction with deep learning (DL) techniques was
undertaken to analyze the power consumption patterns. The research includes several crucial steps.
Power consumption data for the iPhone 6 model was initially collected, which serves as the basis
for the system’s intelligence. Time series analysis plays a major role in the research by assisting
in the comprehension of patterns in power consumption over time, particularly during the boot-up
sequences of iPhone motherboards. In conjunction with time series analysis, DL was implemented
to detect any abnormal or unhealthymotherboard conditions. These models were tested against real-
world operational scenarios and tuned to handle the variabilities of the real-world. A user-friendly
application and server backend were developed to minimize the technicians’ efforts. The study
delivers a diagnostic system for potential iPhones with faults, which improves the overall repair
process by increasing reliability. This research anticipates bridging the gap between technology
and practical applications, benefiting both iPhone users and technicians.

Advanced diagnostic techniques are necessary for the identification of faults in sophisticated devices
that are frequently used in daily life, such as iPhones, due to their high electronic complexity.
Manual diagnostic methods, including manual inspection and point testing, are often inaccurate
and generally consume more time to complete on complex circuit boards like motherboards. Sev-
eral innovative perspectives suggest the potential of power consumption data to address this issue
through machine learning, particularly DL. Deep learning, a subcategory of artificial intelligence, is
regarded as an advanced type of machine learning for fault diagnosis that aims to mine sophisticated
patterns from power consumption data. The process of fault diagnosis is an essential sub-process
in the maintenance of electronic equipment involving the systematic determination of the root
causes of faults [1–3]. This process usually involves observing fault symptoms, isolating potential
sources of problems, and verifying repairs through testing. According to Dahouk and Abu-Naser
(2018) [4], expert systems can be implemented to resolve operational complications associated with
desktop PCs. In their proposed system, the knowledge base was supported by rules collected from
the expert’s database that helped recognize different hardware problems. However, this approach
was most effective when used with singular and specifically identified faults; it could hardly be
successfully implemented in diagnosing complex motherboards with numerous components.

As previous studies have concluded based on the analysis of data, ML brings a more effective
solution to the traditional rule-based system since it extricates patterns to find faults. In 2007 [5],
Aminian used the idea of neural networks to find problems in analog circuits by being able to deal
with component tolerance and non-linearity. However, training such networks, in general, requires
enormous databases consisting of labelled data, which are hard to come by on complex systems. In
recent studies, such as Chern et al. (2019) [6], multi-stage ANNs have been employed to enhance
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the diagnostic accuracy of intermittent faults, demonstrating the inherent versatility of such systems.
Thus, power consumption analysis proves itself to be an effective approach to performing fault
diagnosis, especially on mobile devices. Huang et al. (2010) [7], pointed out that the analysis of
failure logs with power consumption fluctuations should be the key to diagnostics. It is noteworthy
that power consumption changes could be obtained directly from the device. DL is especially
useful due to its capability to work on high-dimensional data for these types of analyses. Ma et al.
(2019) [8], have also shown that Graph Convolutional Networks are effective when used to analyze
circuit netlists for testability analysis. Their approach, based on node embedding to represent the
circuit topology, could extend to probing power consumption and performing fault-prone nodes
identification on motherboards.

One of the disadvantages of time series data is that it is often oscillating and noisy, which limits the
effectiveness of DL. Wavelet transform (WT), especially continuous wavelet transform (CWT) is
an effective technique for decomposing a signal into its constituent frequencies, providing a time-
frequency representation as well as providing a way of filtering noise and emphasizing significant
structures [9]. A CNN is provided with enhanced features for classification based on the CWT
transforms, which produce scalograms related to time-frequency patterns. The same approach can
be naturally applied to the iPhone motherboard fault diagnosis, where CWT carries out feature
extraction from fluctuations in power consumption, helping the deep learning model to establish
the presence of fault patterns.

RNN performs very well when dealing with time-related sequential data therefore, it is suitable for
identifying low-level patterns of power consumption that represent abnormalities. LSTM is partic-
ularly well-suited for time series data among the various types of DL models, including other vari-
ations of RNNs [10, 11]. Long-term dependencies can be modelled by LSTMs, which makes them
effective in establishing patterns of power consumption records over extended periods. LSTM per-
forms better than conventional techniques likeAutoregressive IntegratedMovingAverage (ARIMA)
for time series forecasting [12]. The LSTM has a ‘memory line’ and some gating mechanisms that
allow it to successfully remember long sequences and capture complex and dependent relationships
within time series data. This is especially useful in tasks where future data needs to be predicted
since it carries information about the future from past knowledge [13]. In LSTM models the total
number of complete training cycles against a dataset does not influence performance and a single
epoch can suffice for effective model training.

Studies suggest that diagnostic faults can be detected by identifying load profile (electrical power de-
mand or consumption) changes through the application of methods such as CWT along with CNNs
and LSTMs [14–16]. Obtaining and annotating large datasets remains challenging alongside identi-
fying power profile features and understanding DL decision-making processes. To fully harness DL
capabilities for iPhone motherboard fault diagnosis a sophisticated strategy must be implemented
to overcome existing limitations. Several unresolved matters remain in the application of DL to
diagnose faults in iPhone motherboards. In general, these models face training constraints because
they need large labeled datasets which track power consumption changes. The data acquisition and
labelling procedure require both professional instruments and expert knowledge. The performance
of X-sensitivity prediction models depends heavily on feature engineering as explained by Pradhan
et al. (2018) [17]. A comprehensive analysis of power consumption fields makes the identification
of related features from circuit structure challenging.
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Under the above circumstances, the objectives set for the study are; (1) to develop an iPhone
motherboard fault diagnosis system which uses power consumption patterns to identify faults ef-
ficiently (2) to develop a microcontroller-based data acquisition tool while creating a database of
current consumption patterns for multiple iPhone models fault scenarios and (3) to optimize deep
learning algorithm for fault diagnosis. The research addresses a major practical problem in fault
detection through the creation of a user-friendly tool that simplifies iPhone motherboard diagnosis
while enhancing the accuracy of fault detection. Mobile phone industry face a growing challenge
to identify defects both quickly and accurately. The proposed method takes a fresh approach to
motherboard power usage trends analysis through DL techniques. This approach enables specialists
to swiftly locate malfunctioning areas which reduces diagnostic times along with disassembly and
testing procedures. Traditional diagnostic methods necessitate disassembling almost the entire
phone which increases the risk of damage to both the motherboard and the device itself. The results
of this study reduce this risk by enabling the technicians to use the suggested system to locate
issues non-invasively using power consumption pattern analysis. In addition to making defect
detection easier, this suggested method lowers the possibility that a technician may accidentally
break equipment when disassembling the product. This study utilizes the DL model to identify the
distinctive power consumption patterns associated with 12 main faults that are widely recognized.
The system was developed based on a thorough diagnostic approach combined with DL.

2. DATA AND METHODS

2.1 System Design Overview

FIGURE 1 shows an abstract overview of the implemented system. The diagram illustrates the
system design for power consumption variation analysis and diagnosis. It involves data collection
from iPhone devices, processing through a microcontroller and DL model, and outputting diagnosis
results.

The system consists of several key components, as shown in FIGURE 1. The system collects power
consumption patterns and relevant data when the iPhone is connected to the microcontroller through
the connectors. This connection enables the microcontroller to gather real-time power consumption
readings while the iPhone undergoes its boot-up sequence. After the microcontroller has collected
the power consumption pattern over one minute, a CSV containing the time series data is exported
and sent to the server. Once the data is received by the server, the time series data is fed into the
DL model. Based on the power consumption pattern in time series data, the model determines
the power rail that is affected by the motherboard. After identifying the faulty area, the server
generates diagnostic results indicating the problematic area of the iPhone motherboard. These
results are transmitted back to the PC to be displayed to the technician or end-user. The system
also includes mechanisms for providing feedback to the technician or user. This feedback may
encompass comprehensive diagnostic reports or repair suggestions. Traditional iPhone mother-
board diagnostics involve manual inspection, multimeter probing, and testing components using
schematics. These methods time consuming and require expert knowledge. Their accuracy often
depends on the technician’s skill. Our research’s design aims to overcome these limitations and
make diagnosis more effective.
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Figure 1: System design overview

2.2 Circuits for Data Collection

In this phase, a microcontroller-based data acquisition system was designed and constructed. The
purpose of this system is to collect and process data related to the iPhone’s current consumption
patterns, which will subsequently be used for diagnostic purposes. The following FIGURE 2,
shows the circuit with components including a Raspberry Pi Pico microcontroller, a current sensing
module, a MOSFET, and an OLED display used for data collection. iPhone battery connectors are
used to interface with the iPhone motherboard without causing any damage, enabling non-intrusive
data collection.

Buck Converter: The current and voltage controller is a simple DC-DC converter that produces
an output voltage lower than its input. In an ideal current and voltage controller, the output voltage
is the product of the switching duty cycle and the supply voltage. Therefore, a DC-DC current and
voltage controller module was integrated as a power supply module. The range of input voltage of
this circuit (6∼40V) is wide according to the various power sources. The output voltage is stable
within a range of 1.2V to 36V, while the iPhones require 4.2V. This is a critical factor for maintaining
the tool voltage’s constant level, and it surely lowers the power loss.

INA226: The INA226 can measure both current and voltage. It monitors the voltage drop across
a shunt resistor (for current measurement) and the bus supply voltage. Its extended range allows
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Figure 2: Circuit diagram of the data acquisition tool

it to measure voltages up to 36V and currents up to 20A. Additionally, it has high accuracy and
configurable averaging and conversion times.

Raspberry Pi Pico: The Raspberry Pi Pico is a popular microcontroller board due to its afford-
ability, simplicity, and flexible GPIO pins for various electronics projects. Three communication
interfaces (SPI, I2C, UART) are available on the Raspberry Pi Pico powered by a dual-core Arm
Cortex-M0+ processor. The development of this specific device employed the I2C communication
technique.

IRFZ44N Mosfet: The IRFZ44N Mosfet excels as a powerful Mosfet because of its ability to
handle large currents and switch quickly.

OLED Display: Because OLED displays have a slim profile and consume less power than LCDs
they are ideal for portable devices.

The phase resulted in the completion of a special hardware device designed to extract data from
iPhones which will act as an essential foundation for collecting data and performing diagnostic
evaluations.

2.3 Data Collection

iPhone A1586 also known as the iPhone 6 was selected for the study due to many reasons. The main
reason is since the model is outdated, it remains widely available at repair shops which facilitates
access to extensive datasets. The model includes various specifications and features which could be
used to explore the objectives of the research. Only one model was selected initially, as it enables a
comprehensive examination of the faults within a single model before progressing to other models.
Another factor that influenced the choice of an older model was its financial feasibility, allowing
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researchers to use their resources to develop the diagnostic system without worrying about the
financial aspect. The study focuses on observing power consumption-related patterns on iPhone
motherboards; therefore, the investigated area of the motherboard is narrowed down to a set of
12 power rails. Those power rails in the iPhone motherboard are where many issues can occur
affecting the bootup process, thereby enabling us to associate unique power consumption patterns
with distinctive power rails. Identifying power rails that are affecting the bootup process within the
iPhone motherboard is a key aspect of this research since it permits us to investigate power con-
sumption variations that are specific to particular components and functions in a detailed way. Each
power rail is a provider of electricity to a particular circuit or subsystem within the motherboard,
and any inconsistency in their consumption pattern is a warning sign of malfunction. Through
the use of power rails, which are specific to individual lines, the proposed model can determine
where the problem is with a high degree of accuracy, without extensive manual inspection or even
without preventive repairing. In order to thoroughly evaluate the system’s diagnostic capabilities,
several problems with the 12 power rails were modelled on the iPhone 6. The possible motherboard
problems covered by these scenarios ensure that the proposed model is reliable and capable in
multiple fault diagnosing. The identified power rails are as follows:

• PP_CPU: Main power supply for the iPhone’s central processing unit (CPU)

• PP0V95_FIXED_SOC: This is a 0.95V fixed power line to the CPU/SOC

• 45_XTAL_24M_I: This represents a 24 MHz clock signal from a crystal oscillator, used for
various components within the iPhone.

• NAND: Main power supply for the NAND flash memory, used for storage in the iPhone.

• CHG_LX: Related to the charging circuitry.

• PP_LCM_BL_ANODE: Power rail to the display backlight

• AP_TO_I2C0_SCL: Represents I2C (inter-integrated circuit) communication lines between
the application processor (AP) and other components. SCL refers to the clock line.

• PP1V2_SDRAM: 1.2V power supply for the SDRAM(SynchronousDynamicRandom-Access
Memory), which the main system memory in the iPhone.

• PP1V2_NAND_VDDI: A 1.2V power supply for the NAND flash memory, used for storage
in the iPhone.

• PP_GPU: Similar to PP_CPU, this line is the power supply for the Graphics Processing Unit
(GPU).

• PP1V8_SDRAM: Supply a 1.8V power supply for the SDRAM, the main system memory in
the iPhone.

• PP_VAR_SOC: A variable voltage power supply for the System on a Chip (SOC), which
typically includes the CPU, GPU, and other essential components.

The parameters observed and data were recorded during the data collection process are Power
[mW], Phone model, Affected power rail, Faulty component and Fault. Faulty iPhone devices were
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placed through a bootup process to create the dataset. During this cycle, the power consumption
was monitored carefully. The data was collected at a momentum of 10 readings per second. A
high frequency of sampling was employed to provide a detailed analysis of current consumption
fluctuations during crucial periods, including the initialization and termination of system operation.
Each device was allotted one minute of time to collect the data, and hence there were 600 records
per device.

The collected data was processed and filtered according to its quality and suitability for the anal-
ysis criteria. Some of the elements that were not necessary or important were removed through
techniques such as noise reduction, outlier analysis, smoothing, and filtering (Gaussian filter).
The goal of this step was to improve the signal-to-noise ratio and ensure that all of the produced
data accurately depicted the patterns. The process of creating the dataset involved determining
power consumption under different situations, identifying any potential issues, and organizing and
compiling the data collected.

2.4 Algorithm Selection and Model Development

Identification of the most suitable DL technique is one of the objectives of the study. CNN is par-
ticularly advantageous for image-event analysis and pattern recognition [18]. The time-frequency
representation of CWT enables the detection of transient elements and the observation of changes
in frequency components over time in the signal. This information is valuable for fault detection
[19]. However, since power consumption data changes over time in a unique way, RNNs were
found to be better at understanding the patterns in how the data changes. To improve the extracted
features from the power consumption data, CWT was used due to proven better results [7]. A
time-frequency representation produced by the CWT enables detection of transient elements and
monitoring changes in frequency components throughout the signal duration.

We used an LSTMmodel to classify time series data, although neural networks do not workwell with
sequential data unless they are improved. In contrast, RNNs are developed to support such data by
keeping a memory that contains past information to learn temporal dependencies. During the RNN
implementation, experiments with LSTM have been conducted to determine which one yielded the
most optimal outcomes for the given task. An extra step was taken to help the network learn on its
own using time series data. This was done by using RNN architectures that were synchronized with
structures like Penn Treebank or IMDB for transfer learning. This way, the network was able to
gain some pre-specified knowledge that would allow it to recognize relevant features from the time
series data, thereby yielding excellent results, as mentioned earlier, even with a very small training
set, as proven by Nanduri et al. (2016) [20].

During the training process, an ’unfreezing’ procedure has been maintained, where the previously
frozen layers from pre-training remain frozen initially. However, other layers were gradually and
selectively unfreezed during training to enable the network to learn the distinctive features of our
dataset while still retaining the features learned during pre-training. Adam optimizer was used for
fine-tuning the model. Data augmentation was done using techniques such as scaling, jittering, and
shifting to make the model less sensitive to noise and less prone to overfitting similar to various
other studies [21, 22]. The model was enhanced by selecting the optimal parameters and fine-
tuning the numerous hyperparameters on a validation set. The evaluation process included metrics
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like accuracy, precision, recall, and F1-score. The method utilizes time series data features and uses
RNNs to identify temporal dependencies which allows it to diagnose power rail failures within the
power consumption patterns of iPhone motherboards.

2.5 Desktop Application With Server Backend Development for Predictions

The prime objective of the study was to develop a desktop application with a comprehensible and
convenient user interface to be utilized by users who undertake phone repairs. This will create a plat-
form where non-specialists, such as technicians, can easily relate to the system and its instructions.
The app was designed to be user-friendly, provide efficient navigation, and offer a clear explanation
of its features and functions. The application contains a user interface that allows the technicians
to input specific fields from the iPhone that has undergone initial inspection. This includes the
model number of the phone, the observed consequences, or some other relevant information. The
input should be uncomplicated and guided to eliminate mistakes and ensure the correctness of the
diagnostic process.

The application has a mechanism for triggering the hardware tool to start the diagnostic process.
This feature enables timely and on-demand assessments, providing flexibility in diagnosing iPhones
as needed. This is an aspect of integrating with the database and ensuring that there is constant
communication between the application and the server. The application was developed to enable
future expansion, where new iPhone models can be added or there could be changes at the system
level. The user interface was designed to support different operating systems and devices that are
popular among technicians to ensure that the software is easily accessible.For implementing real-
time fault detection, an independent server back end is created based on which the LSTM deep
learning model is trained. The backend, where the LSTM model is implemented, predicts faults by
taking the power consumption data from the desktop application and sending diagnosis results back
to the desktop application. API calls between the application and the server are properly encrypted
to allow only authorized access to the information while making it easily accessible and secure at
the same time. This design architecture also permits real-time updating and enhancement of the
models for precise diagnostic decisions for end-users.

The application utilizes the Electron framework for the desktop interface and the Django framework
for the backend system. Both frameworks are well-suited for future enhancements and handling
heavy traffic. Electron supports cross-platform compatibility, while Django offers robust features
such as database optimization, caching, and asynchronous request handling. The backend system
is hosted on Azure App Service, which provides automatic scaling, load balancing, and seamless
deployment. Together, these technologies establish a future-proof foundation for the application.
In conclusion, the desktop application with server communication provides an interface between
technicians and the diagnostic system. It is easy to use, accepts the user’s data input, initiates the
diagnostic process, and emphasizes the secure connection with the encrypted server. The develop-
ment process follows the standard guidelines for application design, focusing on both functionality
and security.
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2.6 Testing and Validation

Data acquisition tool validation: In order to establish an effective and reliable procedure for the
data acquisition tool, we followed various testing procedures. Thus, we confirmed that it suc-
cessfully sampled power consumption readings with a frequency of 10 reads per second and was
continuously capturing data for one minute, which cumulatively equalled 600 data points in the
recording session. We tested the tool with iPhones to see if it collects data at the right frequency
and contains minimal noise.

Dataset validation: A good set of data is the primary component that determines the effectiveness of
deep learning. We carefully built a dataset directed to the iPhone 6 because it is easier to access and
there were more records gathered. The dataset comprises the power consumption profiles of twelve
prominent power rails, all of which were exposed to the emulation of short circuits and component
failures. It also made sure that the dataset was inherent in real-life faults and was suitable for training
the DL models.

Deep learning model validation: We evaluated the performance of five deep learning models:
ResNet50, ResNet101, VGG16, VGG19, and LSTM. All of these two models were trained for
100 iterations and tested for accuracy, loss, and F1-score using the prepared data. To perform
model generalization, scaling, jittering, and shifting operations were conducted on the training set.
Therefore, the Adam optimizer was used for fine-tuning the models because of its efficiency. The
LSTM model was proven to be more accurate than other models, with a 99.57% accuracy rate. The
mean F1-score extracted was 0.997, which indicates relatively high accuracy, and the minimum
loss was 0.0008. This showed that LSTM’s ability to model the temporal dynamics of the power
consumption data surpassed the rest in detecting fault patterns.

Desktop application validation: To validate the developed desktop application, multiple tests were
conducted on Windows and macOS operating systems. We concentrated on such aspects as the UI
design, smooth work, and proper safety of data in the application. Functional and performance
tests ensured the integrated working of account management and the input of data for the diagnostic
process, as well as a properly designed display of the results. Data confidentiality was also protected
during transmission and storage through encryption while communicating with the server through
the application.

Real-world validation: As the final step in our research, we had to apply the entire system to actual
service delivery. Mobile phone repair shops were used as partners in the current study, specifically
to diagnose faults in iPhone 6motherboards. A variety of faults were found on power rails, including
shorts and component issues. The tool was successful in identifying the faulty power rails in this
case. Further, the system was developed considering general software maintenance and evolution
principles making it robust for future changes [23–26]. This real-world validation increased the
practicality of the tool by proving that it has the potential to drastically cut down on the time taken
to diagnose the problem and increase repair effectiveness.

The testing and validation process ensure that the developed system is not only effective in identi-
fying faults in iPhone motherboards but also robust and reliable across various simulated scenarios.
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2.7 Scaling and Continuous Improvement

Provisions for scalability have been made to accommodate additional iPhone models and potential
software updates. User feedback will be actively sought to identify areas for improvement and
address evolving diagnostic needs. Regular updates and improvements will be implemented to
ensure the continued effectiveness of the system.

3. RESULTS AND DISCUSSION

3.1 Develop a Microcontroller-Based Data Acquisition Tool:

We created the data acquisition tool in FIGURE 3a and FIGURE 3b, from scratch and tested it. The
image shows the physical device, which includes the components for the data acquisition from the
iPhones. The device can collect power consumption readings at the rate of 10 records per second
collectively, and it can record 600 records per minute, which is well-suited for the intended purpose.
Even though we gathered information from all three iPhone models, the study continued with the
iPhone 6 since it has the most records overall. The number of records for the models that collected
data are; iPhone 6-1600, iPhone 7-420 and iPhone 8-170.

(a). Outside view (b). Inside view

Figure 3: Data acquisition tool
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3.2 Dataset of Current Consumption Patterns for Multiple iPhone Models and Fault
Scenarios:

Under this objective, we collected the power consumption of iPhone motherboards using the de-
veloped microcontroller and created a time series dataset showing the power consumption of the
motherboard when the device is turned on. Due to the limitations of records, the dataset was created
only for the iPhone 6, as shown in FIGURE 4.

Figure 4: iPhone 6 dataset

3.3 To Develop and Optimize a Machine Learning Algorithm for Fault Diagnosis:

When the power consumption pattern is plotted against time, it reveals distinct patterns for each
defect, as illustrated in FIGURE 5 (refer to Appendix A for all images). The record of each device
is then turned into a CWT image, as shown in FIGURE 6, and these images were utilized to carry
out the defect diagnostic procedure, which uses an optimized pre-trained CNN model to recognise
patterns in the images.

The figure shows the line graphs for the different power rails to show the significant difference
between each fault.

The above figure shows the CWT images for some of the faulty power rails to show the significant
difference between each faulty rail (refer to Appendix B for all the images).

3.4 Deep Learning Models:

The four CNNs (ResNet50, ResNet101, VGG16, and VGG19) were tested for their capacity to
classify CWT images based on the affected power rail. Each model was initialized with pre-trained
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Figure 5: Faulty power consumption pattern of power rails

weights from ImageNet and then fine-tuned on our dataset. The training process involved two
stages: initial training with most convolutional layers frozen, followed by a fine-tuning stage where
deeper layers were gradually unfrozen.

The performance of each model was assessed using the metrics Accuracy, Loss and F1-Score.
The training process was monitored over 100 epochs. Out of the ResNet101, ResNet50, VGG16,
VGG19, the LSTM model proved to be extremely efficient, with a test accuracy of 0.99. The
model training was also successful, with a test loss of 0.0008. The F1-score of 0.997 is much higher
compared to the rest of the models trained. Although it’s stated that ResNet50 is the best-performing
model for CNN architectures, the LSTM model significantly performs better than ResNet50 in
terms of accuracy and loss. As a result, the test accuracy of approximately 99% and the low loss
rate indicate that the LSTM model is suitable for power consumption analysis in this application.
This finding supports the use of LSTM models for time series analysis for determining iPhone
motherboard failure diagnosis. TABLE 1 summarizes the performance of the 5 models after fine-
tuning.

The results demonstrate that all four models achieved high accuracy and F1 scores, indicating their
effectiveness in classifying CWT images. ResNet50 exhibited the best performance from CNN
models, achieving the highest F1-Score and accuracy, along with a relatively low loss from CNN
models. The LSTM model exhibited the best overall performance when compared with CNN
models.

3796



https://www.oajaiml.com/ | June 2025 P.D.K. Madhubhashana, et al.

Figure 6: CWT images for faulty power rail patterns

Table 1: Comparison of model performance

Model F1-Score Loss Accuracy

ResNet101 0.9777598287 0.7595050334 0.9785714149
ResNet50 0.9838679385 0.7789865732 0.9857142567
VGG16 0.9704659015 1.2690948247 0.9714285731
VGG19 0.9704659015 1.2001744508 0.9714285731
LSTM 0.9970347708 0.0008827138 0.9957143477

The study employed a Bidirectional Long Short-Term Memory (BiLSTM) model to classify time
series data of power consumption patterns. To improve the model robustness and generalization,
the algorithm used data augmentation techniques, specifically time shifting (±30 units), power
magnitude shifting (±100 mW), and combinations, which doubled the training dataset. The net-
work architecture was designed with two sequential BiLSTM layers, each containing 100 units and
processing input sequences of 600 time steps in both forward and backward directions to capture
comprehensive temporal dependencies. Dropout layers with a rate of 0.3 were applied after each
BiLSTM layer for regularization. This includes a dense layer with 50 units and ReLU activation and
a final Softmax output layer for classification. Training utilized a two-phase strategy: initial training
with the Adam optimizer at a default learning rate and then fine-tuning with Adam at a reduced
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learning rate of 1e-5. Both trained for a maximum of 50 epochs with early stopping (patience of 10,
monitoring validation loss) and a batch size of 32. This approach resulted exceptional performance,
achieving an accuracy of 99.57%, a macro-averaged F1-score of 0.997, precision of 0.9949, and
recall of 0.9951, with loss of 0.0008, demonstrating its high effectiveness. A confusion matrix,
presented in FIGURE 7, further details the classification performance across different fault types.

Figure 7: Confusion matrix of LTSM model

Results suggest that the LSTM architecture is well-suited for extracting relevant features from the
Time series data and making accurate predictions regarding the affected power rail. The training
graphs show a consistent trend of decreasing loss and increasing accuracy over the training epochs.
The fine-tuning stage, where deeper layers were unfrozen, led to further performance improvements.
These observations validate the effectiveness of transfer learning and the fine-tuning strategy em-
ployed in this work.
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3.5 Development of a User-Friendly Desktop Application:

The desktop application offers intuitive user interfaces that enable the user to initiate the diagnosis
process, view the results, and access critical interfaces for both user account management and
diagnosis (FIGURE 8). FIGURE 8(a) shows the home user interface (UI), where the user will
be redirected after logging in to the application. Step-by-step instructions are given to the user by
this interface to start their diagnosis process. FIGURE 8(b) shows the scan completion UI, which
will be shown after the diagnosis process, and the prediction completed, mentioning the predicted
power rail. FIGURE 8(c) shows the scan-initiating UI, where the user will have to enter the basic
details about the device that they are scanning. Finally, FIGURE 8(d) shows the list of scans that
the user has carried out previously.

(a). Home UI (b). Scan completion UI

(c). Scan initiating UI (d). Diagnosis history

Figure 8: GUIs of the desktop application

4. DISCUSSION

The study presents an innovative approach to fault diagnosis for iPhones based on the variation of
the power consumption of the motherboard, employing deep learning. There were studies carried
out generally exploring the fault diagnosis for circuit fault diagnosis using artificial intelligence but
not particularly regarding the field of mobile phones narrowing iPhone motherboards [7]. As per
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the results, the study produced a microcontroller-based data acquisition tool, dataset, deep learning
model for fault pattern recognition, and desktop application for the end user.

Previous research has explored various approaches to fault diagnosis, including rule-based systems
[27, 28], machine learning algorithms [29], and power consumption-based methods [30], but these
have focused on general circuit diagnosis, not specifically on iPhone motherboards. Our contribu-
tion to the field is based on a new method that uses DL together with power consumption patterns to
find motherboard problems in iPhones. Further, the present study’s approach is much more efficient
as it does not involvemanual inspection or component testing as the DL can also perform a diagnosis
of power consumption patterns in a very short time as compared to traditional methods [31].

This study presents a data acquisition tool, a deep learning model, and a desktop application inte-
grated with a server for prediction, which enables this work to seamlessly plug into current iPhone
repair processes. This approach provides a more efficient and easy method of identifying iPhone
motherboard problems than other tools and techniques available. This study employs the LSTM
model to extract rich time information from the power consumption data to predict complex trends
and fluctuations. The developed microcontroller-based data acquisition tool is capable of acquiring
power consumption data within the desired time duration. For example, the tool is capable of
collecting the power consumption data within a minute by collecting 10 records per second, and
hence collecting 600 records per minute at the moment from the connected device. These data
can be used as time series data for the analysis process, either to add to the dataset or for fault
diagnosis. Therefore, the resulting tool satisfies the objective of developing the microcontroller
device, fulfilling all the requirements. Data collection was done in multiple mobile phone repair
centers using the developed microcontroller-based tool. This allowed the tool to be verified against
real-world usage and enabled efficient data collection. The collected data was then preprocessed
to clean and remove unnecessary or null entries. As a result, a complete dataset was successfully
created for the iPhone 6 model, which was used for training a model for fault diagnosis.

The research experimentedwith several DLmodels includingResNet101, ResNet50, VGG16, VGG19,
and LSTM. Out of all the experiments, LSTM shows the best accuracy of 99.57%. The results
indicate the suitability of LSTM in capturing long-term dependencies of power consumption series
is critical for identifying more intricate fault patterns. When comparing ResNet with LSTM, it
produced good accuracy in less time. This finding could suggest that accuracy and speed are
compromised. On the other-hand, VGG models are not that suitable for capturing the intricate
temporal structures present in the power consumption data. These comparisons show why LSTM is
the right deep learning model to use, based on the data type and the balance between accuracy and
speed.

The study also developed a user-friendly desktop application that communicates with the server for
mobile diagnosis prediction. Additionally, user account management is provided by the applica-
tion, allowing the user to safely store records of prior diagnoses and outcomes. The application’s
simple and user-friendly design allows users to quickly learn the diagnostic technique and apply
it without extensive training. This innovative approach can drive the industry to develop faster
component repair methods, improving customer satisfaction. The combination of deep learning
and a data acquisition tool with a user interface greatly distinguishes the proposed system from
conventional diagnostic methods. Traditional diagnostic methods for iPhone motherboard faults
involve manual inspection, multimeter probing, and circuit-level analysis using schematics. These
procedures are time-consuming, demand substantial technical expertise, and their effectiveness can
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vary significantly depending on the technician’s experience. In contrast, the proposed AI-based
diagnostic system automates fault identification by leveraging power consumption signatures and
machine learning models, thereby reducing diagnosis time and enhancing consistency. Although
a direct quantitative comparison with manual methods is constrained by the lack of standardized
benchmarks and variability in human performance, our approach shows strong potential for im-
proving efficiency, standardizing fault detection, and reducing dependence on expert technicians. A
key advantage of the developed DL-based diagnostic tool when compared with traditional methods
that this tool is ahead in enhanced speed, accuracy, and reduced invasiveness. Manual diagnostics,
heavily reliant on technician experience, schematics, and iterative probing, can be exceptionally
time-consuming and exhibit variability in success rates.

The project’s impact could be increased by adapting the tool to support a wider range of iPhone
models. The project’s current primary constraint is the dataset’s insufficient size. In addition, the
dataset itself limits the model’s ability to generalize effectively across a diverse range of scenarios.
This is due to the fact that deep learning models are not trained on every possible fault pattern
that can be found on the iPhone’s motherboards. Additionally, another significant challenge is the
particularly second-hand iPhones, that are plagued by numerous defects.

We assessed the reliability and performance of our iPhone motherboard fault diagnosis tool in real-
world settings. We utilized our data acquisition tool to analyze various iPhone 6 units to collect
power consumption data. Based on the gathered power consumption data, the tool was able to
pinpoint the power rails that were impacted. This real-world validation proved the applicability
of the tool in identifying the faulty power rails in iPhone 6 motherboards and illustrates the tool’s
effectiveness.

The primary focus of our study is on the iPhone 6 model, which allows researchers to conduct in-
depth analysis and develop proof-of-concept. However, there are limitations regarding the imme-
diate generalizability of the findings to other iPhone models or newer devices. The iPhone 6, being
an older model, provided an accessible platform for developing and validating our methodology;
however, power consumption characteristics, common fault points, and component architectures
can vary significantly across different hardware generations. Furthermore, while the system showed
high accuracy for the 12 identified power rail faults, its adaptability to entirely novel or unen-
countered fault types within the iPhone 6, or its transferability to diagnosing faults in substantially
different embedded systems without retraining or significant adaptation, remains an area requiring
further investigation. The ”intelligence” of the current system is highly specific to the patterns
learned from the iPhone 6 dataset.

Utilizing a multi-tier approach and taking these constraints into account, the project can be further
improved in the future. First and foremost, we should concentrate on the addition of a substantial
number of records to the dataset. A series of strategies, including data augmentation techniques,
synthetic data generation, and partnerships with other repair centers, enabled the implementation
of this project. The effects of real scenarios are more plausible when the datasets are larger and
more diverse, as the models are more capable of accurately depicting them and generalizing their
behaviour in complex scenarios. Additionally, an unsupervised learning pathway that has been de-
veloped can identify and address fault patterns, even if they have not been previously observed. The
traditional diagnosis approach is rigid, whereas this model becomes more intelligent and adaptive
in its diagnosis by autonomously identifying faults within the collected data through the deriva-
tive methods. Future work should focus on developing a more adaptable diagnostic tool that can
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accurately identify a variety of device configurations and fault conditions, thereby improving its
utility for mobile phone technicians dealing with diverse hardware issues. This involves validating
and adapting the proposed methodology across newer iPhone models and hardware generations
by analyzing differences in power consumption behavior, component layout, and fault patterns.
Enhancing these aspects will improve the generalizability and practical relevance of the system
across a broader range of devices.

5. CONCLUSION

This study addresses significant challenges in the field of iPhone motherboard fault diagnostics,
specifically the identification of iPhone motherboard faults using deep learning techniques. It is
time-consuming and inefficient to manually identify deficiencies in these complex components. By
analyzing power usage, this research allows for more precise identification of both the problematic
area and the damaged power rails. The development of a microcontroller-based data collection tool
with a circuit layout design marks a significant advancement. The tool was used to effectively and
reliably collect power consumption data from the affected motherboard. The study also used the
Continuous Wavelet Transform to turn the collected time series data into images. These images
were then turned into visual representations, which let the study use the power of CNN models that
can recognize images. This research employs an LSTMmodel, a type of Recurrent Neural Network.
The LSTM model detected complicated patterns within converted power consumption data with a
greater accuracy of 99.57%. There is no existing tool that uses power consumption data with DL to
analyze faults.

The user-friendly data gathering tool makes data collection easier, while the desktop application
provides a simple and intuitive interface for analysis. This desktop application uses a server-based
prediction model for its predictions. This combination prepares the solution for seamless integration
into existing workflows in commercial mobile phone repair centers. This evaluation of the tool and
its application in real-world scenarios resulted in a high level of accuracy. In summary, this inves-
tigation has the potential to significantly impact the field of mobile phone repair. This significantly
reduces the time required for precise defect diagnosis. This proposed approach is intended to reduce
system downtime for iPhone users and enhance repair efficiency. The study will establish a future
in which iPhone repair is no longer a time-consuming endeavor but rather a straightforward, rapid,
and precise one.
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Appendix A: Faulty power consumption pattern of each power rail
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Appendix B: CWT images of 12 power rails
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