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Abstract
Self-supervised Learning (SSL) is a machine learning algorithm for pretraining Deep Neu-
ral Networks (DNNs) without requiring manually labeled data. The central idea of this
learning technique is based on an auxiliary stage aka pretext task in which labeled data
are created automatically through data augmentation and exploited for pretraining the DNN.
However, the effect of each pretext task is not well studied or compared in the literature.
In this paper, we study the contribution of augmentation operators on the performance of
self supervised learning algorithms in a constrained settings. We propose an evolutionary
searchmethod for optimization of data augmentation pipeline in pretext tasks andmeasure the
impact of augmentation operators in several SOTA SSL algorithms. By encoding different
combination of augmentation operators in chromosomes we seek the optimal augmentation
policies through an evolutionary optimization mechanism. We further introduce methods for
analyzing and explaining the performance of optimized SSL algorithms. Our results indicate
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that our proposed method can find solutions that outperform the accuracy of classification of
SSL algorithms which confirms the influence of augmentation policy choice on the overall
performance of SSL algorithms. We also compare optimal SSL solutions found by our
evolutionary search mechanism and show the effect of batch size in the pretext task on two
visual datasets.

Keywords: Self-supervised Learning (SSL), Data Augmentation, Evolutionary Algorithms,
Deep Learning, Deep Neural Networks, Optimization, Explainability, Artificial Intelligence

1. INTRODUCTION

The supreme power of Machine Learning algorithms is founded on supervised learning techniques.
However, while these algorithms have shown to be tremendously successful in solving classification
problems, they remain entirely dependent on a large corpus of manually annotated data. As a
result, the whole process of learning is not autonomous and tends to be influenced by the error
of annotation. Self-supervised learning (SSL) has been introduced in response to tackling these
limits by making the possibility of training DNNs without relying on labelled data. The core of
SSL is based on an auxiliary phase, aka pretext task which focuses on pretraining networks using
automatically generated labeled data. One crucial aspect of pretext tasks is transforming unlabeled
images using augmentation operators in order to produce labeled samples. Although many different
SSL paradigms have been developed, there is no specific investigation about their level of effective-
ness and usefulness. Moreover, there is no specific study to investigate the effect of augmentation
operators on the performance of each of the proposed self-supervised algorithms. In this study, we
show that the choice of augmentation operators can bear an impact on the achievable performance
of the downstream problem. Through a series of experiments, we seek to measure the influence of
different augmentation policies. We formulate an evolutionary search algorithm in order to optimize
the transformation settings that lead to best outputs. To this end, we focus on four state-of-the-art
SSL algorithms that have indicated high performance on various datasets. This paper encompasses
the following original contributions. We first investigate the best combination of augmentation
operators in four state-of-the-art SSL algorithms through an evolutionary learning algorithm. Then,
we compare the performance of these SSL methods before and after the optimization process.
We find and evaluate the best augmentation operators for each SSL method across two different
datasets. In the end, we run explanatory analysis over the optimized chromosomes to understand the
impact and importance of augmentation operators for each SSL algorithm and dataset. This paper
is organized as follows: We provide an overview about self-supervised learning, auto augmentation
and search optimization algorithms in section 2. In section 3, implementation details are mentioned.
Then, in section 4, our method is described. The experiments and results are provided in section 5.
The explainability methods are presented in section 6. Finally, section 7 concludes the paper.

2. RELATEDWORK

In this section, we provide a literature survey about related prior work in three subsections. First,
we introduce the paradigm of self-supervised learning algorithms and review ongoing research in

1136



https://www.oajaiml.com/ | June 2023 Noah Barrett, et al.

this field. Secondly, we go over recent advances in Auto Augmentation. Finally, we provide an
overview about intelligent search algorithms.

2.1 Self-Supervised Learning

Self-supervised learning has increased attention in machine learning due to its ability to handle
unlabeled data more efficiently than the traditional unsupervised learning. This is achieved by
designing a new phase of learning known as pretext task, which is an attempt for solving an auxiliary
classification task. The auxiliary task is focused on classifying the data into self-labeled categories
in order to obtain a pretrained model with rich feature representation about the underlying structure
of data. Various approaches have been proposed for designing the pretext tasks, which can be
classified into patch-based, instance-based, and video-based methods. Patch-based methods aim to
learn the relative position between patches of an image [1], while instance-based methods utilize
the whole image and take advantage of an augmentation task such as an affine transformation [1]
or colorization [2]. In contrast, video-based methods design a task that can take advantage of the
sequential ordering of frames in a video clip [3]. Self-supervised learning can also be categorized
into generative or contrastive models. Generative modeling approaches aim to reconstruct the
input through the deployment of autoencoders [4], and GANs [5], while the contrastive approach
includes the attempts to increase the discrimination between different images and decrease it for
similar ones by applying contrastive learning [6]. Self-supervised learning is highly associated to
contrastive models, while the generative approach is often considered as an unsupervised learning
scheme. A variety of different approaches have been proposed in order to solve the pretext task,
which is highly focussed on different forms of augmentation, such as spatial location and relative
positions of patches [7, 8], image transformation including rotation [9], altering global statistics
while preserving local statistics [10], data and color jittering, painting and coloring [2]. Given the
fact that such pretext tasks are intrinsically different, it is very intriguing to investigate the effect of
pretraining process of pretext task in quest of discovering performance differences in downstream
tasks. In this paper, we focus on comparing four state-of-the-art SSL algorithms, namely, BYOL
[11], simsiam [12], NNCLR [13] and SWAV [14]. All of these SSL algorithms share fundamental
similarities in their architecture and underlying methodology. Specifically, all algorithms employ
a Siamese architecture at its core. Siamese architectures consist of a shared input network which
feeds into two separate neural networks that share weights, and an architecture that is analogous to
siamese twins in nature. Conventionally, Siamese networks are used for images where the inputs
are different images, and the actual comparability of images are determined in a supervised manner
[12]. BYOL, SimSiam, NNCLR, and SwAV share the general notion of contrastive learning using
a siamese architecture, however the specific details of implementation and theoretical motivation
creates significant differences in the four algorithms. It is of great importance to note that the authors
of these four algorithms highlight, to varying degrees, their invariability to augmentation. The
proposed work looks into the margins of these findings and expose that while there is an astounding
invariance to augmentation strategies in the proposed algorithms overall, there still is room for
improvement for understanding the effect of augmentation in contrastive learning. The key idea
of BYOL is that from a given representation, called the target representation, it is possible to train
an enhanced representation,i.e., the online representation. BYOL works iteratively, to improve the
learned representation by using a slow moving average of the online network as the target network
[11]. BYOL does not require negative samples, and claims to be insensitive to batch sizes and the
types of augmentations used. BYOL’s ability of not requiring a large batch sizes, negative pairs,
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as well as having a novel level of robustness to augmentations, was what made it a breakthrough
algorithm at the time of its release. BYOL’s robustness to augmentation is in comparison to one
of the earliest forms of contrastive SSL SimCLR [15]; it is shown that BYOL suffers a much
smaller performance drop than SimCLRwhen only using random crops. SimSiam is an SSLmethod
that opts for simplicity and highlights the significance of the Siamese network architecture of SSL
methods. SimSiam shows that the shared weight configuration is key to many core SSL algorithms,
and a simple stop gradient approach can be used to prevent collapse [12] which is a common
issue in many algorithms employing Siamese networks. Collapse occurs when the model maps
every image to the same point, maximizing similarity when comparing, but in turn not learning
any important information about problem at hand. SimSiam provided surprising evidence that
meaningful representations can be learned without the use of negative sample pairs, large batches
and momentum encoders. The first two of these were already unnecessary in the earlier work shown
in BYOL, however, the momentum encoder component was thought of as a crucial component to
its avoidance of collapsed solutions. Perhaps, the most remarkable discovery produced by SimSiam
could be that a simple stop gradient is all that is needed to successfully train a Siamese architecture.
Compared to BYOL and SimSiam, SwAV provides a novel mechanism for learning. Following the
vanilla approach of contrastive learning, BYOL and SimSiam learn by predicting the ”closeness”
of two views of a sample, this is a core concept to Siamese networks and their impactful discoveries
in representation learning. Simply put, SwAV learns by computing a code from an augmented
version of an image and then predicts this code from other augmented versions of the same image.
The method simultaneously clusters data while enforcing consistent cluster assignments between
different views [16]. Additionally, SwAV introduces a novel augmentationmulti-crop, which allows
for more memory efficient comparisons by utilizing a small set of large crop windows and a larger
set of small crop windows. This means, despite employing a Siamese architecture, SwAV is not
actually a form of contrastive learning. However, SwAV, at its core, still aims to learn a strong
latent representation of the problem at hand. The use of this alternate approach yields a new
breakthrough unfound by BYOL and SimSiam, which is the ability to significantly reduce the
number of pairwise feature comparisons, reducing the computational and memory requirements
of the algorithm. Compared to the other discussed SSL methods, NNCLR introduces a very novel
concept with respect to the selection of positive pairs. Rather than deriving positive samples for
an image via augmentation, they show that it is possible to use the nearest neighbours of an image
of interest in the given data space as positive samples. Like BYOL and SimSiam, NNCLR is a
contrastive learning method, which, similar to SimSiam, employs a very simple architecture. The
novelty is in the selection of positive samples from the given dataset rather than derivation from
augmentation. NNCLR samples positive samples by computing the nearest neighbours of a given
sample in the learned latent space of the dataset. This approach provides more semantic class-wise
variations rather than predefined transformations which tend to provide more geometric information
[13]. Alike all the above-discussed approaches, NNCLR finds that it is not very reliant on data
augmentation.

All four discussed algorithms share the use of a Siamese architecture; SimSiam can be thought of
as the simplest version of these learning approaches using a Siamese architecture. BYOL adds a
slight sort of complexity to the learning method by employing a slow-moving average approach for
the target component of the Siamese network. Like SimSiam, NNCLR also opts for simplicity
in its architecture, however, it refrains from employing only augmentation to generate positive
samples, and instead, determines the nearest neighbours of a given image to select positive samples.
SwAV differs from all three methods in that it utilizes a swapped prediction mechanism for learning
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rather than the typical contrastive mechanism. All four algorithms have recently shown remarkable
breakthroughs in the self-supervised computer vision world, and for this reason they have been
chosen as focal points in our work. The four algorithms all claim to have a varying degree of
invariance to data augmentation based on empirical findings. However, the contrastive mechanism
of BYOL, SwAV and SimSiam, rely solely on data augmentation. Given the limited discussion
on the effect of data augmentation, the question of its impact to the different SSL algorithms still
remains. In this work, we hypothesize that by picking the best set of augmentation operators, we
can boost the performance of SSL algorithms.

2.2 Auto Augmentation

Data Augmentation is a regularization technique that has been mainly developed for dealing with
overfitting issue in training DNNs by increasing the diversity of training examples [17]. Recently,
this approach has been adopted in contrastive self-supervised learning procedure for creating addi-
tional positive samples while preserving the semantic content of observations [18]. As mentioned in
previous section, the positive samples will be discriminated against negative samples in a training
procedure to obtain a rich embedding that can be used for learning different tasks. While data
augmentation is the core basis of self-supervised learning, little attention has been placed over
understanding its impact and there are not many investigations about the theoretical success of
augmentation tasks. To the best of our knowledge there is no systematic study to assess the effect of
employing different augmentation policies in self-supervised learning. Some authors have pointed
out the important role of transformation operators in self-supervised feature learning performance.
Jenni et al., argued that transformation function selection is data-specific and hence each dataset
might benefit from a different set of transformations [10]. In addition, different tasks could require
tailored augmentation techniques. For example, for anomaly detection a novel proxy task has been
proposed [19]. Along the recent endeavors in AutoMLwhich aim to automate the Machine Leaning
procedure, auto augmentation methods are developed in order to seek the optimal augmentation
strategies for training deep neural networks to improve their performance. AutoAugment can be
regarded as one of the pioneering approaches for designing an automatic data augmentation learning
procedure [20]. This approach is based on employing reinforcement learning to explore search
space of augmentation policies. In [21] the auto augmentation procedure is accelerated by matching
the density between training and validation data. PBA [22] is another approach for that uses a
hyperparameter search algorithm to learn a schedule of augmentation polices.

2.3 Search Optimization Algorithms

Search optimization algorithms are one of the core components for the tremendous success of
machine learning techniques and they are increasingly exploited in fundamental problems of pa-
rameter and hyperparameter tuning and model selection [23]. An optimization algorithm seeks to
adjust the configuration of machine learning algorithms by minimizing a cost function such that
it will lead to accurate estimation and prediction. Through iterative search algorithms, the best
configuration that best describes a distribution of observable data can be obtained. There are a
variety of search optimization techniques which are employed for machine learning tasks [24]. The
simplest one is known as exhaustive search which looks for finding the best parameters by checking
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as many possible solution as possible based on the level of desirable performance or computational
resources. Two well-known subcategory of this type are random search which randomly explores
the search space, and grid search which systematically discretizes the search space and checks
the solutions that fall on in grid. Other more intelligent methods which are developed for a more
effective search are including Gradient based methods, Reinforcement Learning and Evolutionary
Algorithms. Gradient based approaches are iterative search algorithms which attempt to find the
optimal solutions according to gradient value at each step. These algorithms often gets stuck in
local optima. Reinforcement learning algorithms, on the other hand, is a search paradigm that
traverses solution space based on taking actions from a predefined list. Each action changes the
state of the agent and induces a reward. The goal is to maximize the return or the sum of discounted
rewards. Evolutionary optimization is referred to bio-inspired methods in which a population of
solutions are created, evolved and evaluated iteratively. Three popular Evolutionary algorithm
variants are Genetic Algorithms (GA), Genetic Programming (GP) and Evolutionary Strategies
(ES) [25]. Evolutionary algorithms have attracted attention of researcher due to multiple unique
properties. They can search the space in a parallel and independent manner, they are not based
on gradient calculation and hence do not suffer from exploding or vanishing gradients [26]. Due
to these intriguing features, in this paper, we have applied a Genetic algorithm which is described
in the next section. We follow the basic execution steps of GA algorithms. Each components
of genetic algorithm is problem dependent and needs to be tuned and adapted to the task based
on experimentation [27, 28]. There are different possibilities for defining each GA operator and
component. Chromosomes can be encoded in a binary or value representation. Selection algorithm
could be roulette wheel, rank selection or tournament. Crossover could be single point, k-point or
partially mapped. Mutation could be inversion or reverse [29]. The common approach is to adjust all
these parameters according to the application in hand. In our experiments, we followed parameter
tuning strategy for selection of operators and applied parameter control for crossover and mutation
rates. There are several variants of GA algorithms, such as hybrid GA, parallel GA and chaotic GA
[29]. The objective of this research is not to investigate and compare these variants, but to leverage
classic GA as a meta-heuristic optimization method to tune SSL algorithm’s operators. We have
made the comparison between four SSL algorithm in three different settings of fully supervised,
default SSL and improved with GA algorithm.

3. IMPLEMENTATION DETAILS

This work is interested in exploring a massive amount of different configurations of augmentations
in the pretext task of common SSL algorithms, in order to do so, two standard benchmark which
are commonly used for image classification are used. We explore the performance of four SSL
algorithms using two different batch sizes of 32 and 256. We carry out the experiments on CIFAR-
10 and SVHN datasets. In the following subsections, we provide more in-depth details about the
outcome of each experiment.1

1 Code is available at https://github.com/zahsa/ESSL.
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Table 1: All augmentation operators used and the associated intensity ranges. This set of operators
is the same as AutoAugment [20].

Augmentation Intensity Range

HorizontalFlip 0.0, 1.0
VerticalFlip 0.0, 1.0
ShearX 0.0, 0.3
ShearY 0.0, 0.3
TranslateX 0, 14
TranslateY 0, 14
Rotate -30, 30
Color 0.1, 1.9
Solarize 0.0, 1.0
Contrast 0.1, 1.9
Sharpness 0.1, 1.9
Brightness 0.1, 1.9

3.1 Dataset

CIFAR-10. The CIFAR-10 dataset [30] is a popular coloured image dataset consisting of 10 classes
of airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. This dataset consists of
60000 32x32 images, with 50000 train images and 10000 test images. The test set consists of 1000
randomly sampled instances from each class, and the remaining 50000 are used for the training set.
The classes in this dataset are mutually exclusive and the creators took extra caution to ensure the
similar classes of truck and automobile contain no overlap.

SVHN. The Street ViewHouse Numbers (SVHN) Dataset [31] is an image dataset consisting of real
world images of house numbers taken from Google street view images. This dataset is presented
as a more challenging version of MNIST [32] consisting of 600,000 32x32 labeled digits which are
cropped from street view images. The classification problem posed in SVHN is significantly harder
than MNIST as it contains real-world images of numbers.

3.2 Network Architecture and Training Specifications

For all experiments, a small and simple convolutional neural network is used as the backbone for
both pretraining and downstream tasks. As illustrated in FIGURE 1, this network consists of 3
convolutional blocks. Each block contains two convolutions with a kernel size of 3x3, followed
by ReLU activation functions, a max pool and a batch normalization operation. For each SSL
algorithm, i.e., BYOL, NNCLR, SimSiam and SwAV, this backbone is applied in accordance to the
specific algorithm. All the hyperparameter used for network training of each of the SSL algorithm
are according to the original papers. For the downstream classification task, all experiments use an
Adam optimizer with a learning rate of 0.001 and weight decay of 0.0005. Cross entropy is used
as loss function. In addition, a three layer linear model with ReLU activation is used on top of the
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pretrained networks. We train both the pretext and downstream tasks for 10 epochs. The backbone
is first pretrained using one of the four SSL algorithms then the linear head is added to the network
for fine-tuning on the downstream task. For each experiment, we roughly exploit 4GB of GPU and
12 CPUs.

Figure 1: Architecture of Network used for the downstream task.

The implementation of the proposed work relies on several different libraries. For the deep learning
components, such as model architectures, dataset loading, and supervised training, PyTorch is used
[33]. Building on PyTorch, the python library, Lightly [34], implements cutting-edge SSL algo-
rithms, this library is used for implementing the four SSL algorithms in this research. To implement
the evolutionary mechanism in this research, the python library Deap [35] is employed.

4. METHOD

We propose two evolutionary mechanism for augmentation operator optimization through a genetic
algorithm to find the best performing chromosomes and correspondingmodels. The first approach is
a single optimization method, in which augmentation policy of each one of the four SSL algorithm is
optimized individually, whereas the second approach is a multi optimization method through which
not only we optimize the augmentation policy but also optimize the downstream task performance
by finding the best performing algorithm. We apply a genetic algorithm to optimize augmenta-
tion policies for four different cutting-edge self-supervised algorithms. From a genetic algorithm
perspective, the key area that requires the most attention is the definition of the fitness function.
The proposed fitness function serves as a proxy function that aims to gauge the impact of changing
the augmentation policies for a given self-supervised algorithm. Below, our formulation of the
fitness function is elaborated. To represent the augmentation strategies as chromosomes we employ
a value representation. We experiment with two different flavors of evolutionary augmentation
optimization, namely single optimization (SO) and Multiple Optimization (MO) modes. With SO
we choose one specific SSL algorithm and exclusively optimize the augmentation operators which
are presented in each gene, while withMO, one gene in the chromosome specifies the SSL algorithm
and the best algorithm will be found through optimization process. Hence, the major difference
between SO and MO lies within the chromosome structure which is elaborated in detail in section
4.1 .
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4.1 Chromosome Definitions and Augmentation Policies

Taking inspiration from AutoAugment and the preceding work in learning augmentation policies,
the proposed value encoding assumes a set of 𝑘 augmentations, 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑘}. For each
augmentation 𝑎𝑖 an intensity value 𝑖 can be defined. Authors of [20] defined a range of values
for intensity of each augmentation operator. For the purpose of this work, these ranges have been
borrowed. TABLE 1, shows all the different operators used in our experiments along with their
possible 𝑖 values. Let 𝑖𝑘 be the intensity value assigned to augmentation operator 𝑎𝑘 and 𝐾 be the
maximum number of augmentation operators, in SO, we formulate an augmentation policy in a
chromosome as 𝐶𝑖 = {(𝑎1, 𝑖1), (𝑎2, 𝑖2), . . . , (𝑎𝑙, 𝐼𝑙)}, where 𝑙 ≤ 𝐾 . All of the studied algorithms
in this paper employ the augmentation strategy used by SimCLR [15]. It was found that no single
transformation suffices to learn good representations and when composing many augmentations the
task becomes harder but the learned representation is improved significantly [15]. In this study,
we use a value of 3 for 𝑙. Theoretically, it would be possible to obtain further improvement with a
higher number of augmentation operators, but it will increase the computational cost of running the
experiments. The choice of 3 augmentation operators is used to attempt to strike a balance between
the computational burden, simplicity of the problem and the quality of the learned representation. In
MO, we represent a chromosome as 𝐶𝑖 = (𝑎𝑙𝑔 𝑗 , {((𝑎1, 𝑖1), (𝑎2, 𝑖2), . . . , (𝑎𝑙, 𝑖𝑙)}) where 𝑎𝑙𝑔 𝑗 is one
of the SSL algorithms in {𝑆𝑤𝐴𝑉, 𝑁𝑁𝐶𝐿𝑅, 𝑆𝑖𝑚𝑠𝑖𝑎𝑚, 𝐵𝑦𝑜𝑙}.

4.2 Fitness Function

The proposed fitness function aims to evaluate augmentation policies for SSL algorithms based
on downstream tasks. More specifically, the test accuracy in the downstream supervised task
serves as the fitness for augmentation optimization. It is important to note that in this work we
are focused on the augmentation policies for the pretext task, and a fixed set of augmentations
are used for the supervised downstream task. The most crucial part of our fitness function is
the fixing of randomness. By fixing every random component of the deep learning pipeline, the
difference between two augmentation strategies can be soundly compared in relative terms. In
order to compensate for bias due to fixing the random components of the deep learning pipeline we
evaluate our method using 𝑁 different random seeds for the neural network initialization and data
shuffling. The seed values for each experiment are shown in TABLE 3.

4.3 Selection

There exists a large swath of different selection methods such as Roulette, tournament and Rank
[36]. Our method opts for a simple and common approach of Roulette. In this approach, every
chromosome has an equal chance of being selected proportional to their fitness.

4.4 Crossover

When selecting a crossover operation caution must be taken to prevent the children chromosomes
from having duplicate augmentations. To handle this issue, PartiallyMapped Crossover (PMX) [37]
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is employed. This method avoids creation of chromosomes with duplicate genes. When performing
crossover between two or more chromosomes, the mechanism for preventing duplicate genes is
based purely on the augmentation operator and not the intensity. When two chromosomes are
crossed over, the shared genes are completely copied over to maintain the same intensity as the
parent’s gene. When performing crossover for our MO approach, PMX is applied to the augmen-
tation policy portion of the chromosome, but for the SSL gene, it is probabilistically swapped with
the other chromosome.

4.5 Mutation

For mutation, only the intensities of the augmentation operators are mutated. In order to perform
this, a custom mutation function is created. We call this function 𝑀𝑢𝑡𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐶ℎ𝑜𝑖𝑐𝑒. This
mutation operator probabilistically mutates the genes intensity values within the acceptable range
of intensity for that specific operator. The intensity is increased or decreased incrementally by
the range of the intensity values (as shown in TABLE 1) divided by the increment value which is
computed using equation 1. For MO, 𝑀𝑢𝑡𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐶ℎ𝑜𝑖𝑐𝑒 is applied to the augmentation policy
portion of the chromosome, but for the SSL gene, the gene is randomly mutated to a different SSL
algorithm.

𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 =
𝑚𝑎𝑥(𝑖𝑟𝑎𝑛𝑔𝑒) − 𝑚𝑖𝑛(𝑖𝑟𝑎𝑛𝑔𝑒)

10
(1)

4.5.1 Adaptive Mutation Rates

When applying Mutation and Crossover, whether to apply the operation to the chromosome(s) is
probabilistically determined using a mutation and crossover rate. Our method employs adaptive
crossover and mutation rates (i.e. 𝑝𝑐 and 𝑝𝑚) inspired by [38] as shown in Equations 2 and 3:

𝑝𝑐 = ( 𝑓𝑚𝑎𝑥 − 𝑓 ′)/( 𝑓𝑚𝑎𝑥 − 𝑓 ), 𝑓 ′ ≥ 𝑓

𝑝𝑐 = 1, 𝑓 ′ < 𝑓 (2)

𝑝𝑚 = ( 𝑓𝑚𝑎𝑥 − 𝑓 )/( 𝑓𝑚𝑎𝑥 − 𝑓 ), 𝑓 ′ ≥ 𝑓

𝑝𝑚 = 0.5, 𝑓 < 𝑓 (3)

where 𝑓𝑚𝑎𝑥 and 𝑓 denote the maximum fitness value and the average fitness value of the population
respectively, and 𝑓 ′ denotes the larger fitness of the two chromosomes to be crossed or mutated.

5. EXPERIMENTS

In this work, we aim to understand the impact of augmentation operators used in the pretext task
of four popular SSL algorithms. By using an evolutionary mechanism to evolve augmentation
policies, hundreds of models are trained during one run of the algorithm. To provide baselines for
comparison, we train models in both supervised and self-supervised fashions with the augmentation
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operators according to the original papers. This provides us with an insight into how our evolved
augmentation pipelines compare with a purely supervised approach as well as SSL approaches
using the original augmentation pipelines. Given that we train the networks under a constrained
setting (i.e., using a small network and minimum number of training epochs), we conduct another
experiment in which we study how the best evolved augmentation pipelines perform when trained
for more epochs in both the pretext task and downstream task. For this experiment, we exploit the
optimal augmentation operators we found through our proposed evolutionary search mechanism.

Supervised setting. For training the supervised baseline models, we conduct the supervised classi-
fication task using all of the same hyperparameters as the downstream task in the SSL experiments
with no pretraining, i.e., we train a randomly initialized architecture from scratch. This baseline
gives us the ability to compare the representations learned with self-supervision and a randomly
initialized representation. In all supervised baselines we use the same configuration described in
the downstream task.

Self-supervised baselines.To understand how the learned augmentation pipelines compare with
the original SSL algorithm, we train models using the augmentations used in the original papers.
Because our specific training configuration is significantly constrained in terms of network archi-
tecture and trarining epochs compared to the original papers, these baselines serve as a method
for us to understand how the SSL algorithm behaves in our constrained setting. When training
these baselines, the exact same hyperparameters such as batch size, and number of epochs as the
algorithms trained with evolved augmentations are used. This allows us to understand how changing
the augmentations in our setting affect the SSL algorithm with respect to the original augmentation
configuration.

Evolutionary SSL. The fitness function in the proposed GA employs the downstream test accuracy
as its metric. The hyperparameterization of the SSL configuration in our evolutionary based search
is the exact same as the self-supervised baseline, except for the augmentations in the pretext task.
Precautions were taken to ensure that all random components of the SSL pipeline were controlled
with a fixed seed, ensuring that the only component of the pipeline that changes is the augmentations
itself. Both the default SSL configuration and Evolutionary Optimized Augmentation configuration
using the evolved augmentation use the exact same downstream configuraiton as the supervised
baseline. Because of this, with the basic SSL and supervised baselines, we are able to compare how
the SSL pretraining using an evolved augmentation policy improves the performances achieved by
both the supervised and SSL baselines.

Effect of batch sizeWe study the effect of batch size in the pretext task, and so batch sizes of 32
and 256 were experimented for all the supervised, self-supervised and evolutionary self-supervised
modes.

Effect of number of epochs Given that in our experiments are conducted in a constrained setting,
the evolutionary algorithm utilized a low number of epochs. To better evaluate the performance of
SSL algorithms, we carry out an experiment, in which we use the best found augmentation policies
by our evolutionary search mechanism and train SSL models for 50, 100, and 1000 epochs in the
pretext task and 50 epochs in the downstream task.
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(a) BS 32, Cifar10 (b) BS 256, Cifar10

Figure 2: Training models for more epochs in both the pretext and downstream task. X-axis
representing the different SSL algorithms, hue representing the number of epochs used
for the pretext task (50, 100 or 1000), and the y-axis representing the improvement on the
initial accuracy of the augmentation pipeline.
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5.1 Results

As explained in the previous sections, in order to understand the effect of changing the augmentation
operators in the pretext task of the four mentioned SSL algorithms, the Evolutionary Algorithm is
carried out. For each of the four algorithms, BYOL, SimSiam, SwAV and NNCLR, two datasets
of SVHN and Cifar10 and pretext batch sizes of 32 and 256 were used. To mitigate the bias
due to randomness, 𝑁 random seeds were used to control all randomness in the deep learning
components of the algorithm, where 𝑁 for each experiment is shown in TABLE 3. This ensures
that the differences in training outcomes are not due to randomness in the training pipeline, such
as model initialization, or shuffling of data. For each of the SSL algorithms, batch sizes and data
sets, our Evolutionary Optimized Augmentation Algorithm was employed with a population size of
15. Running for 10 generations, with a population size of 15 and for the number of seeds shown in
TABLE 3, resulted in a total of 15000 different augmentation configurations in competition with
one another. Note that due to the nature of the GA, with individuals being carried over to the next
generation, not all 15000 configurations are unique.

We find that we can consistently improve the SSL algorithms performance by applying our proposed
evolutionary method. In FIGURE 3, we show the average of the best fitness over all the seeds for
each of the four algorithms across generation. More specifically, for each random seed experiment,
the best fitness at each generation is extracted and then the average for all seeds is computed. For
both Cifar10 and SVHN, an overall monotonic trend of optimization is observed which confirms
that our proposed evolutionary method improves the performance of SSL aglorithms. We observe
that, mostly, NNCLR accounts for the smallest net improvement, whereas BYOL shows the largest
improvement. Furthermore, we compare the distribution of classification accuracy of the best
solutions of different random initialization found in the final generation of evolutionary process
in the both datasets using two different batch sizes in pretext task of SSL. FIGURE 4, suggests that
the batch size of 256 has a larger impact on the improvement of the accuracy of downstream task
classification. In addition, we observe that the results obtained from SVHN dataset presents on par
average accuracy for all the four algorithms. In contrast, in CIFAR-10 there is a noticeable variation
in the average accuracy of the four algorithms in both batch sizes. With batch size 32, the highest
performance is achieved by SimSiam in CIFAR-10 and Byol in SVHN, while with batch size 256,
all the four algorithms produce similar results.

Furthermore, the details of optimal performance obtained by each of the four algorithms are com-
pared in TABLES 4, 5, 6 and 7. The results indicate that mostly higher accuracies are achieved
when using larger batch size in both datasets. In addition, the solutions found by both SO and MO,
outperform those obtained by supervised and self supervised learning. In all cases, including both
datasets, both batch sizes and for the four SSL algorithms, the SO algorithm finds better solutions
than MO. This is due to the fact that single optimization procedure is focused on solutions from
a specific SSL method and has a more limited search space. More interestingly, in all cases,
when we deploy the best configurations found by augmentation operators from SO and train for
50 in pretext and 100 in downstream tasks, we outperform all the results when compared to the
supervised training. These results are denoted by SSL(optimized) in the Tables. In order to ensure
that our proposed strategy is consistently achieving better results than the baselines, statistical t-
tests were run with acceptance values of 0.95 and 0.99 for comparison of our single optimization
strategy with self-supervised baselines presented in TABLE 8. As evident from the results, it can
be observed that the out-performance of the self-supervised baselines is statistically significant
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(a) Cifar10, BS 32 (b) Cifar10, BS 256

(c) SVHN, BS 32 (d) SVHN, BS 256

Figure 3: The average of the best found downstream test accuracy using SO strategy for the
supervised classification tasks at each generation for all seeds listed in TABLE 3
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(a) Cifar10, BS 32 (b) Cifar10, BS 256

(c) SVHN, BS 32 (d) SVHN, BS 256

Figure 4: Comparison of test accuracies of downstream task using SO strategy for different seeds.
All used seed values are listed in TABLE 3
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Table 2: Best found augmentation policies. 𝑎𝑢𝑔𝑖 refers to the order of augmentation application.
𝑜𝑝𝑖 refers to the corresponding intensity value

Dataset ssl algorithm 𝑎𝑢𝑔1 𝑜𝑝1 𝑎𝑢𝑔2 𝑜𝑝2 𝑎𝑢𝑔3 𝑜𝑝3

svhn SwaV Color 1.48 TranslateX 3.00 ShearX 0.13
svhn BYOL Sharpness 0.95 Contrast 1.28 Solarize 0.32
svhn SimSiam Contrast 1.15 TranslateX 5.00 ShearY 0.12
svhn NNCLR Color 0.90 ShearY 0.05 Solarize 0.32
cifar10 NNCLR Sharpness 0.88 Contrast 1.18 ShearX 0.10
cifar10 SwaV TranslateX 8.00 Brightness 0.69 Color 0.50
cifar10 BYOL Contrast 0.97 Sharpness 0.34 Rotate -1.00
cifar10 SimSiam TranslateX 8.00 VerticalFlip 0.64 Contrast 1.24

in all cases, confirming that our proposed augmentation policy optimization strategy can lead to
statistically significant improvement in the accuracy of classification results with SSL algorithms.
As mentioned before, in all the experiments, we used 10 epochs for both the pretext and downstream
tasks. However, in order to better understand howwell the proposed evolved augmentation pipelines
behave for larger number of epochs in our experiment setting, we conduct another experiment in
which we measure the effect of number of epochs on the results. For this experiment, the best
augmentation pipeline for each SSL algorithm is used in their respective pretext tasks and are
trained for 50, 100, and 1000 epochs. The obtained pretrained models were then fine tuned in
the downstream task for 50 epochs. With this experiment, we compare the models being trained for
10 epochs in both the pretext and downstream phases with models that are trained for 50, 100, and
1000 epochs in the pretext task and 50 epochs in the downstream task. As illustrated in FIGURE 2,
we see that there is an increasing boost in performance in downstream task when using 50 and 100
epochs in the pretext task, but this improvement degrades when using 1000 epochs. This finding
indicates that training the pretext task for too long results in overfitting and a decay in classification
accuracy. Furthermore, we summarize the best found policies in TABLE 2, and visualize the effect
of these policies by a few examples in FIGURE 5 and FIGURE 6 for CIFAR-10 and SVHN datsets
respectively. Details about number of seeds for each experiment is listed in TABLE 3.

6. EXPLAINABILITY

In this section, we propose two algorithms for analyzing the best models encoded in the optimal
performing chromosomes and explain the effect of augmentation operators. In the following sec-
tion, we introduce an augmentation sensitivity and augmentation importance analysis in order to
understand the most influential operators for each dataset and SSL algorithms.

6.1 Augmentation Sensitivity

In order to measure the sensitivity of each algorithm to each augmentation operator, we design an
ablation study in which we measure the amount of difference in performance in absence of each
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Figure 5: Visualization of best found augmentation policies for cifar10. The policies are presented
in TABLE 2. Each row shows the effect of augmentation operator applied to an example
image in sequence.
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Figure 6: Visualization of best found augmentation operators for SVHN. The policies are presented
in TABLE 2. Each row shows the effect of augmentation operator applied to an example
image in sequence.
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Table 3: Seed values for each experiment including pretext batch sizes and datasets. Algo indicates
the SSL algorithms optimized with SO strategy.

exp algo seed

bsize=256, data=svhn SwaV [0, 1, 2, 3, 4, 5, 6, 7, 8]
bsize=256, data=svhn BYOL [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
bsize=256, data=svhn SimSiam [0, 1, 2, 5, 6, 7, 8]
bsize=256, data=svhn NNCLR [0, 1, 2, 3, 4, 5, 6, 7, 8]
bsize=32, data=svhn SwaV [0, 1, 2]
bsize=32, data=svhn BYOL [0, 1, 2, 3]
bsize=32, data=svhn SimSiam [0, 1, 2]
bsize=32, data=svhn NNCLR [0, 1, 2]
bsize=32, data=cifar10 NNCLR [0, 1, 2, 3]
bsize=32, data=cifar10 SwaV [0, 1, 2, 3, 4, 5]
bsize=32, data=cifar10 BYOL [0, 1, 2, 3, 4, 8]
bsize=32, data=cifar10 SimSiam [0, 1, 2, 3]
bsize=256, data=cifar10 SwaV [0, 1, 2, 3, 4, 5, 6, 7]
bsize=256, data=cifar10 BYOL [0, 1, 2, 3, 4, 5, 6, 7]
bsize=256, data=cifar10 SimSiam [0, 1, 2, 3, 4, 5, 6, 7]
bsize=256, data=cifar10 NNCLR [0, 1, 2, 3, 4, 5, 6, 7]

Table 4: Best found accuracy on downstream task for Cifar10 with a batch size of 32 in the pretext
task. SO: Single Optimization. MO: Multiple Optimization. SSL (optimized): the
best outcomes when training the best-found configurations for longer epochs. The bold
italicized values represent the best-found results from the SO, MO and two baselines. The
bolded values show the improved results with longer training epochs for the best found
SO methods.

algo NNCLR SimSiam SwaV BYOL

SSL (SO) 84.26 84.48 84.30 84.27
SSL (MO) 83.94 84.18 84.18 83.92
SSL (default) 82.81 83.59 81.59 83.83
Supervised 83.24 83.24 83.24 83.24
SSL (optimized) 85.58 85.72 84.74 86.03

operator. More specifically, in order to measure the sensitivity of 𝑎𝑖 operator, we remove this
operator from all chromosomes that include it and replace it with all possible operators from our
augmentation set and obtain a new set of chromosomes. Then we obtain the difference between
the average performance of this set and the performance of the original chromosome: OS(𝑎𝑖) =
performance(𝑎𝑖) - average(performance(𝑎𝑘)) for all k The pseudocode is presented in Algorithm 1
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Algorithm 1 Computing Sensitivity
𝑜𝑝 ←Operator of interest
𝐶 ←Set of all Chromosomes
𝐶𝑜𝑝 ←Subset of chromosomes in 𝐶 that contain operator 𝑜𝑝
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ← 0
for 𝑐𝑖 in Cop do

𝐴𝑣𝑔𝑆𝑖𝑚𝐴𝑐𝑐 ← 0
𝑇𝑜𝑡𝑎𝑙𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝐶ℎ𝑟𝑜𝑚𝑜𝑠← 0
for 𝑐 𝑗 in C do

𝑁𝑢𝑚𝐸𝑞𝑢𝑎𝑙𝑂𝑝𝑠← 0
for 𝑜𝑝𝑖 in 𝑐𝑖.operations do

𝑁𝑢𝑚𝐸𝑞𝑢𝑎𝑙𝑂𝑝𝑠← 𝑁𝑢𝑚𝐸𝑞𝑢𝑎𝑙𝑂𝑝𝑠 + 1
end for
if 𝑜𝑝 not in 𝑐 𝑗 .operations and 𝑁𝑢𝑚𝐸𝑞𝑢𝑎𝑙𝑂𝑝𝑠 ≡ 𝑐𝑖.length −1 then

𝐴𝑣𝑔𝑆𝑖𝑚𝐴𝑐𝑐 ← 𝐴𝑣𝑔𝑆𝑖𝑚𝐴𝑐𝑐 + 𝑐 𝑗 .accuracy
𝑇𝑜𝑡𝑎𝑙𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝐶ℎ𝑟𝑜𝑚𝑜𝑠← 𝑇𝑜𝑡𝑎𝑙𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝐶ℎ𝑟𝑜𝑚𝑜𝑠 + 1

end if
𝐴𝑣𝑔𝑆𝑖𝑚𝐴𝑐𝑐 ← 𝐴𝑣𝑔𝑆𝑖𝑚𝐴𝑐𝑐 ÷ 𝑇𝑜𝑡𝑎𝑙𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝐶ℎ𝑟𝑜𝑚𝑜𝑠
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ← 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + |𝑐𝑖.accuracy −𝐴𝑣𝑔𝑆𝑖𝑚𝐴𝑐𝑐 |

end for
end for
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ← 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ÷ 𝐶𝑜𝑝.length

Table 5: Best found accuracy on downstream task for Cifar10 with a batch size of 256 in the
pretext task. SO: Single Optimization. MO: Multiple Optimization. SSL (optimized): the
best outcomes when training the best-found configurations for longer epochs. The bold
italicized values represent the best-found results from the SO, MO and two baselines. The
bolded values show the improved results with longer training epochs for the best found
SO methods.

algo NNCLR SimSiam SwaV BYOL

SSL (SO) 84.36 84.43 84.57 84.20
SSL (MO) 84.24 83.85 83.97 84.20
SSL (default) 83.86 83.23 83.22 84.01
Supervised 83.24 83.24 83.24 83.24
SSL (optimized) 85.90 86.06 85.93 85.81
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Table 6: Best found accuracy on downstream task for SVHN with a batch size of 32 in the
pretext task. SO: Single Optimization. MO: Multiple Optimization. SSL (optimized):
best outcomes when training the best-found configurations for longer epochs.The bold
italicized values represent the best-found results from the SO, MO and two baselines. The
bolded values show the improved results with longer training epochs for the best found
SO methods.

algo NNCLR SimSiam SwaV BYOL

SSL (SO) 93.35 93.41 93.29 93.39
SSL (MO) 93.07 93.07 93.07 92.70
SSL (default) 92.34 92.52 91.88 92.85
Supervised 91.28 91.28 91.28 91.28
SSL (optimized) 93.67 93.75 93.58 93.55

Table 7: Best found accuracy on downstream task for SVHN with a batch size of 256 in the
pretext task. SO: Single Optimization. MO: Multiple Optimization. SSL (optimized):
best outcomes when training the best-found configurations for longer epochs. The bold
italicized values represent the best-found results from the SO, MO and two baselines. The
bolded values show the improved results with longer training epochs for the best found
SO methods.

algo NNCLR SimSiam SwaV BYOL

SSL (SO) 93.41 93.55 93.50 93.37
SSL (MO) 92.94 92.94 92.83 92.94
SSL (default) 92.75 91.87 91.95 92.34
Supervised 83.24 83.24 83.24 83.24
SSL (optimized) 93.70 93.68 93.63 93.67
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Table 8: T-Test results for all Single-Objective experiments against SSL baseline.
batch size dataset algo p-val 95% C.I. 99% C.I.

32 cifar10 BYOL 4.926368e-07 True True
32 cifar10 NNCLR 2.658124e-05 True True
32 cifar10 SimSiam 2.917474e-06 True True
32 cifar10 SwaV 2.240725e-06 True True
32 svhn BYOL 1.658260e-05 True True
32 svhn NNCLR 1.515886e-04 True True
32 svhn SimSiam 4.092746e-04 True True
32 svhn SwaV 4.330569e-04 True True
256 cifar10 BYOL 1.990317e-12 True True
256 cifar10 NNCLR 3.736046e-12 True True
256 cifar10 SimSiam 1.584149e-12 True True
256 cifar10 SwaV 1.235250e-15 True True
256 svhn BYOL 5.714354e-25 True True
256 svhn NNCLR 5.901998e-21 True True
256 svhn SimSiam 3.431059e-19 True True
256 svhn SwaV 1.401669e-18 True True

6.2 Augmentation Importance

In this analysis, for each operator and each SSL method, we calculate the number of times an
operator has appeared in the top 50 chromosomes from all the generations (based on test accuracies).
We normalized this value by number of operators and number of chromosomes. The details of this
procedure are illustrated in Algorithm 2 This method allows us to find the degree of utilization
of augmentation operators for generating the best found chromosomes. This metric allows us to
understand how different augmentations are impacting the top chromosomes.

Algorithm 2 Computing Operator Importance
𝑜𝑝 ←Operator of interest
𝐶 ←Set of all Chromosomes
𝑁 ← Number of chromosomes to consider
𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 ← 0
𝐶 ← sorted(𝐶)
for 𝑐𝑖 in C[: 𝑁] do

if 𝑜𝑝 in 𝑐𝑖.operations then
𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 ← 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 + 1

end if
end for
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6.3 Explainability Findings

FIGURE 7, demonstrates an overall view of augmentation importance and sensitivity for both batch
sizes. From this figure we can interestingly observe that both analyses follow nearly a similar trend
and disclose similar information about each operator. Note that importance values show the more
frequently used operators in the best policies, whereas, the sensitivity analysis accounts for the
operators that make a bigger change in accuracy. Crucially, certain augmentation operators are
found to be globally prevalent whereas others do not. In addition, the results of the four algorithms
BYOL, NNCLR, SwAV and SimSiam, resembles a non-uniform distribution of sensitivity and
importance values for the various operators. This supports the idea that specific augmentations
lead to a stronger pretext task in the SSL algorithms. We would expect a more uniform distribution
if the augmentations had no effect on the outcome. In our results we observe that in all cases, one
or several augmentations dominate while others are very uncommon or are not even present in bar
charts. Plots a and c of FIGURE 7, which are corresponding to the sensitivity analysis, illustrate that
the algorithms are most sensitive to contrast and sharpness and least sensitive to translateY. Both
flip operations have the second and third lowest overall sensitivity value, meaning that none of the
algorithms appear to be overly sensitive to the flip operation. TranslateX, color, brightness, rotate,
solarize and both shear operators all have amedium sensitivity value. These findings suggest that all
four SSL algorithms are more sensitive to the augmentations that are non-geometric transforms such
as contrast and sharpness, and are less sensitive to the geometric transforms, such as translate and
flip. From the stacked bar charts, it is also observable that certain operators are more influential in
each dataset. It can be observed that SimSiam appears to be consistently sensitive to the brightness
operator in SVHN and to contrast and shearY in CIFAR-10, SwAV has a relatively high sensitivity
to color and rotate in SVHN and several operators such as color and sharpness in CIFAR-10. BYOL
consistently has a varied range of sensitivities to the different augmentation operators in SVHN, and
in CIFAR-10, and the algorithm is most sensitive to contrast and sharpness operators. For NNCLR,
we see that the experiments using SVHN are most sensitive to sharpness. For CIFAR-10, there is
not as clear of a pattern, however, horizontalFlip is relatively showing a high sensitivity.

The augmentation importance bar charts in plots b and d of FIGURE 7, suggest that for both datasets
shearX and translateX have appeared dominantly in top chromosomes, while verticalFlip, horizon-
talFlip and translateY are the least applied operators. For SVHN, the remaining augmentations are
more evenly distributed in terms of importance than Cifar10. We see overall the same augmentations
for both datasets in between the lowest and high-importance augmentations, yet the ordering is
slightly different. It is observed that sharpness has a higher overall importance in SVHN than
Cifar10, as does color. Contrast, solarize, rotate, shearY and brightness are all relatively similar in
terms of overall importance for both datasets. When considering the importance metrics for all four
algorithms in FIGURE 7, it is clear that specific augmentations are most important. For BYOL it is
found that solarize is the most important for SVHN and translateX for Cifar10. Additionally, it can
be seen that both shear operations are consistently of relatively high importance for both datasets
with BYOL. For NNCLR, color is most important with SVHN and shearX is most important with
Cifar10. The most important operators for SimSiam are translateX for SVHN and shearX and
shearY for Cifar10. Lastly, for SwAV contrast is the most important augmentation for both datasets.
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(a) Sensitivity SVHN (b) Importance SVHN

(c) Sensitivity Cifar10 (d) Importance Cifar10

Figure 7: Global view of augmentation sensitivity and importance

1158



https://www.oajaiml.com/ | June 2023 Noah Barrett, et al.

6.4 Landscape Analysis

To better compare the SSL algorithms and in order to measure the effect of batch size in our
experiments we utilize a strategy for analyzing the loss of the resultant downstream models, known
as loss landscape analysis. Loss Landscape analysis aims to provide a deeper understanding of the
optimized model parameters and its context in its respective parameter space by slightly perturbing
the model parameters around the optimized parameterization. This provides a landscape of the loss
function for the given parameter space, allowing for insights into how convex or chaotic the loss
space around the solution is. Producing a loss landscape for a given model architecture and problem
is not a trivial task and many different approaches exist for doing so. This work opts to employ a
filter normalization approach presented by Li et al. [39] to visualize the loss landscape. The filter
normalization loss landscape visualization was chosen for this work as it was found to accurately
capture the local sharpness and flatness of minimizers. Understanding the local geometry of the
loss landscape is an essential component for understanding the behaviour of the loss function in the
problems at hand. As discussed in [39], a key component of the filter wise normalization technique
is a random vector technique used by [40, 41]. In this technique two random vectors 𝛿 and 𝜂 are
sampled from a randomGaussian distribution, as well as a center point 𝜃∗, where 𝜃∗ is the optimized
parameter configuration. Then a 2d contour is generated by plotting the function4:

𝑓 (𝛼, 𝛽) = 𝐿 (𝜃 ∗ +𝛼𝛿 + 𝛽𝜂) (4)

where 𝛼, and 𝛽 are the respective lengths of random vectors 𝛿 and 𝜂. The key component of this
approach which differs from earlier random vector approaches is that, the sampled directions are
filter-wise normalized. That is the random vectors are scaled to the filters within the CNN to ensure
that the area covered by the random vectors are not too small or too large for the set of parameters.
Mainly, it was found that the results with Cifar-10 were more interesting in terms of effect of batch
size. For this reason we choose to further explore the loss landscapes of the experiments on Cifar-10
dataset. For all four SSL algorithms, NNCLR, BYOL, SimSiam and SwAV and the two batch sizes
32, and 256, we use the filter normlaization technique with a 𝛼, and 𝛽 both set to 10 and a sample
size of 50 resulting in a 50𝑥50 loss landscape. Li et al. [39] found that with the filter normalization
method it was possible to visualize how batch size impacts minima sharpness, large batches were
found to produce visually sharper minima. We visualize the loss landscape of the best solutions
found by our evolutionary search mechanism. Remarkably, in all four SSL algorithms we notice a
difference in sharpness when training with a batch sizes of 32 and 256 in the pretext task and keeping
a fixed batch size of 32 in the downstream task. As illustrated in FIGURE 8, we observe that BYOL,
NNCLR and SimSiam all have converged to sharp minima in the downstream task when using a
batch size of 256 in the pretext task, and a visibly flatter minima when using a batch size of 32 in
the pretext task, the opposite result is observed in SwAV.

7. CONCLUSION

Our contribution in this paper is two-fold; On one hand, we focused on optimizing the performance
of SSL algorithms by finding the best augmentation operators. To this end, we proposed an approach
based on evolutionary optimization to automatically find the optimal augmentation operators and
their intensities in order to maximize the accuracy of downstream task. In this regard, we evaluated
and compared the performance of four SOTA SSL algorithms optimized by our proposed method.
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(a) BYOL (b) NNCLR (c) SimSiam (d) SwAV

Figure 8: Comparing the loss landscape of the downstreammodels, using SSLmethods with a batch
size of 32 (top row) and batch size of 256 (bottom row). We see that the smaller batch
size in the SSL pretraining leads to a less sharp minimization in the downstream task.
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Our results indicated that our proposed method boosts the accuracy of downstream classification
task. On the other hand, we proposed algorithms for explaining the optimized solutions in order to
analyze and find the impact of augmentation operators applied in the pretext task of SSL algorithms.
Accordingly, we designed explainability experiments to elicit the most influential augmentation
operators using two standard visual datasets. We further analyzed the impact of different parameters
including batch size and epoch number, and visualized loss landscapes to better understand the best
augmentation policies and best performing models. To the best of our knowledge this work is the
first attempt to optimize hyper-parameters used in the pretext task for self-supervised learning algo-
rithms. Our results confirm that SSL algorithms are sensitive to the choice of augmentation policies.
We also demonstrated that our proposed evolutionary augmentation optimization method can find
the solutions that lead to performance enhancement of SSL algorithms by efficiently searching the
augmentation policy space.

8. CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

9. FUNDING

This research has been supported by the Natural Sciences and Engineering Research Council of
Canada.

10. DATA AVAILABILITY STATEMENT

The datasets analyzed in this study can be found at [https://www.cs.toronto.edu/~kriz/cifar.html]
and [http://ufldl.stanford.edu/housenumbers/].

References

[1] Doersch C, Gupta A, Efros AA. Unsupervised Visual Representation Learning by Context
Prediction. In: Proceedings of the IEEE international conference on computer vision.
2015:1422-1430.

[2] Zhang R, Isola P, Efros AA. Colorful image colorization. In Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part III. Springer International Publishing. 2016:649-666.

[3] Misra I, Zitnick CL, Hebert M. Shuffle and Learn: Unsupervised Learning Using Temporal
Order Verification. In: European conference on computer vision. Springer.2016:527-544.

[4] Pathak D, Krahenbuhl P, Donahue J, Darrell T, Efros AA. Context Encoders: Feature Learning
by Inpainting. In: Proceedings of the IEEE conference on computer vision and pattern

1161

https://www.cs.toronto.edu/~kriz/cifar.html
http://ufldl.stanford.edu/housenumbers/


https://www.oajaiml.com/ | June 2023 Noah Barrett, et al.

recognition. 2016:2536-2544.

[5] Donahue J, Krähenbühl P, Darrell T Adversarial Feature Learning. 2016. arXiv preprint: https:
//arxiv.org/pdf/1605.09782.pdf

[6] Oord A VD, Li Y, Vinyals O. Representation Learning With Contrastive Predictive Coding.
2018. arXiv preprint:1 https://arxiv.org/pdf/1807.03748.pdf

[7] Dosovitskiy A, Springenberg JT, Riedmiller M, Brox T. Discriminative Unsupervised Feature
Learning With Convolutional Neural Networks. Adv Neural Inf Process Syst. 2014;27.

[8] Noroozi M, Favaro P. Unsupervised Learning of Visual Representations by Solving Jigsaw
Puzzles. In: European conference on computer vision. Springer. 2016;24:69-84.

[9] Gidaris S, Singh P, Komodakis N Unsupervised Representation Learning by Predicting Image
Rotations. 2018. ArXiv preprint: https://arxiv.org/pdf/1803.07728

[10] Jenni S, Jin H, Favaro P. Steering Self-Supervised Feature Learning Beyond Local Pixel
Statistics. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2020:6407-6416.

[11] Grill JB, Strub F, Altché F, Tallec C, Richemond P, et al. Bootstrap your own latent-a new
approach to self-supervised learning. Adv Neural Inf Process Syst. 2020;33:21271-21284.

[12] Chen X, He K. Exploring Simple Siamese Representation Learning. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2021:15745-15753.

[13] Dwibedi D, Aytar Y, Tompson J, Sermanet P, Zisserman A. October. With a Little Help
From My Friends: Nearest-Neighbor Contrastive Learning of Visual Representations. In
Proceedings of the IEEE/CVF International Conference on Computer Vision 2021. 2021:9588-
9597. Arxiv preprint: https://arxiv.org/pdf/2104.14548.pdf

[14] Caron I, Misra J, Mairal P, Goyal P, Bojanowski P, et. al, Unsupervised Learning of Visual
Features by Contrasting Cluster Assignments. Adv Neural Inf Process Syst. 2020;33:9912-
9924.

[15] Chen T, Kornblith S, Norouzi M, Hinton G . A Simple Framework for Contrastive Learning
of Visual Representations. 2020. Arxiv preprint: https://arxiv.org/pdf/2002.05709.pdf

[16] Caron I, Misra J, Mairal P, Goyal P Bojanowski, et.al. Unsupervised Learning of Visual
Features by Contrasting Cluster Assignments. 2021. Arxiv preprint: https://arxiv.org/pdf/
2006.09882.pdf

[17] Shorten C, Khoshgoftaar TM. A Survey on Image Data Augmentation for Deep Learning. J
Big Data. 2019;6:1-48.

[18] Kügelgen V, Sharma Y, Gresele L, Brendel W, Schölkopf B, et al. Self-Supervised Learning
With Data Augmentations Provably Isolates Content From Style. Adv Neural Inf Process Syst.
2021;34:16451-16467.

[19] Li CL, Sohn K, Yoon J, Pfister T. Cutpaste: Self-Supervised Learning for Anomaly Detection
and Localization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2021:9659-9669.

1162

https://arxiv.org/pdf/1605.09782.pdf
https://arxiv.org/pdf/1605.09782.pdf
https://arxiv.org/pdf/1807.03748.pdf
https://arxiv.org/pdf/1803.07728
https://arxiv.org/pdf/2104.14548.pdf
https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2006.09882.pdf
https://arxiv.org/pdf/2006.09882.pdf


https://www.oajaiml.com/ | June 2023 Noah Barrett, et al.

[20] Cubuk ED, Zoph B, Mane D, Vasudevan V, Le QV. Autoaugment: Learning Augmentation
Strategies From Data. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2019:113-123.

[21] Lim S, Kim I, Kim T, KimC, Kim S. Fast Autoaugment. AdvNeural Inf Process Syst. 2019;32.

[22] Ho EL, Chen X, Stoica I, Abbeel P. Population Based Augmentation: Efficient Learning of
Augmentation Policy Schedules. In: International Conference on Machine Learning. 2019:
2731-2741.

[23] Brazdil P, van Rijn JN, Soares C, Vanschoren J. Metalearning: Applications to Automated
Machine Learning and Data Mining. Springer Nat. 2022.

[24] Yang L, Shami A. OnHyperparameter Optimization ofMachine Learning Algorithms: Theory
and Practice. Neurocomputing. 2020;415:295-316.

[25] Chiong R, Weise T. Variants of evolutionary algorithms for real-world applications.
Michalewicz Z, editor. Berlin: Springer. 2012.

[26] Such V, Madhavan E, Conti J, Lehman KOS, et al. Deep Neuroevolution: Genetic Algorithms
Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement
Learning. 2018. ArXiv preprint: https://arxiv.org/pdf/1712.06567.pdf

[27] Bäck T, Eiben AE, van der Vaart NAL. An Emperical Study on Gas ”Without Parameters”.
In: Parallel Problem Solving From Nature Ppsn. Proceedings 6: 6th International Conference
Paris, France. Vol. VI. Springer. 2000:315-324.

[28] Eiben AE, Hinterding R,Michalewicz Z. Parameter Control in Evolutionary Algorithms. IEEE
Trans Evol Computat. 1999;3:124-141.

[29] Katoch S, Chauhan SS, Kumar V. A Review on Genetic Algorithm: Past, Present, and Future.
Multimedia Tool Appl. 2021;80:8091-8126.

[30] http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf

[31] Netzer TW, Coates A, Bissacco A, Wu B, et al. Reading Digits in Natural Images With
Unsupervised Feature Learning. In: NIPS Workshop on Deep Learning and Unsupervised
Feature Learning. 2011.

[32] Deng L. The Mnist Database of Handwritten Digit Images for Machine Learning Research.
IEEE Signal Process Mag. 2012;29:141-142.

[33] Paszke S, Gross FM, Lerer A, Bradbury J, Chanan G, et al. Pytorch: An Imperative Style,
High-Performance Deep Learning Library. Adv Neural Inf Process Syst. 2019;32:8024-8035.

[34] https://github.com/lightly-ai/lightly

[35] Fortin FM, De Rainville MA, Gardner MA, Parizeau M, Gagné C. Deap: Evolutionary
Algorithms Made Easy. J Mach Learn Res. 2012;13:2171-2175.

[36] Poli R, Langdon WB, McPhee NF, Koza JR. A Field Guide to Genetic Programming.
Morrisville, NC: Lulu Press. 2008.

1163

https://arxiv.org/pdf/1712.06567.pdf
http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf
https://github.com/lightly-ai/lightly


https://www.oajaiml.com/ | June 2023 Noah Barrett, et al.

[37] Reeves C. Genetic algorithms. In: Glover F, Kochenberger GA, editors. Handbook of
Metaheuristics. Boston: Springer US. 2003:55-82.

[38] Srinivas M, Patnaik LM. Adaptive Probabilities of Crossover and Mutation in Genetic
Algorithms. IEEE Trans Syst Man Cybern. 1994;24:656-667.

[39] Li ZX, Taylor G, Studer C, Goldstein T, Goldstein T, et al. Visualizing the Loss Landscape of
Neural Nets. 2018. ArXiv preprint: https://arxiv.org/pdf/1712.09913.pdf

[40] Goodfellow IJ, Vinyals O, Saxe AM. Qualitatively Characterizing Neural Network Optimiza-
tion Problems. 2015. Arxiv preprint: https://arxiv.org/pdf/1412.6544.pdf

[41] Im DJ, Tao M, Branson K. An Empirical Analysis of Deep Network Loss Surfaces. 2017.
Arxiv Preprint: https://arxiv.org/pdf/1612.04010.pdf

1164

https://arxiv.org/pdf/1712.09913.pdf
https://arxiv.org/pdf/1412.6544.pdf
https://arxiv.org/pdf/1612.04010.pdf

	INTRODUCTION
	RELATED WORK
	Self-Supervised Learning
	Auto Augmentation
	Search Optimization Algorithms

	IMPLEMENTATION DETAILS
	Dataset
	Network Architecture and Training Specifications

	METHOD
	Chromosome Definitions and Augmentation Policies
	Fitness Function
	Selection
	Crossover
	Mutation
	Adaptive Mutation Rates


	EXPERIMENTS
	Results

	EXPLAINABILITY
	Augmentation Sensitivity
	Augmentation Importance
	Explainability Findings
	Landscape Analysis

	CONCLUSION
	CONFLICT OF INTEREST STATEMENT
	FUNDING
	DATA AVAILABILITY STATEMENT

