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Abstract
Infrastructure managers must maintain high standards to ensure user satisfaction during the
lifecycle of infrastructures. Surveillance cameras and visual inspections have enabled progress
in automating the detection of anomalous features and assessing the occurrence of deterio-
ration. However, collecting damage data is typically time consuming and requires repeated
inspections. The one-class damage detection approach has an advantage in that normal im-
ages can be used to optimize model parameters. Additionally, visual evaluation of heatmaps
enables us to understand localized anomalous features. The authors highlight damage vision
applications utilized in the robust property and localized damage explainability. First, we
propose a civil-purpose application for automating one-class damage detection reproducing
a Fully Convolutional Data Description (FCDD) as a baseline model. We have obtained
accurate and explainable results demonstrating experimental studies on concrete damage and
steel corrosion in civil engineering. Additionally, to develop a more robust application, we
applied our method to another outdoor domain that contains complex and noisy backgrounds
using natural disaster datasets collected using various devices. Furthermore, we propose a
valuable solution of deeper FCDDs focusing on other powerful backbones to improve the
performance of damage detection and implement ablation studies on disaster datasets. The
key results indicate that the deeper FCDDs outperformed the baseline FCDD on datasets
representing natural disaster damage caused by hurricanes, typhoons, earthquakes, and four-
event disasters.
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1. INTRODUCTION

1.1 Related Works on Vision-based Anomaly Detection

Over the past decade, anomaly detection techniques have attracted significant attention towidespread
domain of applications assisted by the methodologies of machine learning and deep learning. Pre-
vious survey papers provided fruitful systematic overviews [1–4], focused on the model property,
application domain, and trustworthiness to be more interpretable, fair, robust, and privacy settings.
Specifically, vision-based deep learning applications have emerged by two driving forces: com-
puting accessibility and digitalized society that accelerate the creation of many datasets annotated
with several class labels. There has been over 20 datasets of surface damage for industrial products
that have focused on various materials: steel, metal, aluminum, tile, fabric, printed board, solar
panel, and civil infrastructures: concrete, road, pavement, bridge, and rail [5]. The construction
domain is no exception, image-based structural health monitoring and visual inspection techniques
have been facilitated using deep learning algorithms [6, 7]. Visual structural datasets enable to
promote the development of widespread applications, over 80 studies towards the infrastructure
damage: deterioration, displacement, and exfoliation [8]. This paper highlights the damage vision
application utilized in the robust property and localized damage explainability.

Figure 1: Our proposed deeper FCDDs via the existing anomaly detection models.

As shown in FIGURE 1, modern anomaly detection approaches can be divided into four cate-
gories: pixel-wise segmentation, one-class classification, patch-wise embedding-similarity, and
reconstruction-based models. Inspired with [3], these anomaly detection approaches are reviewed
in a unified manner progressing from less to more complexity scale through several categories of lo-
calization models. Firstly, anomaly detection approaches based on less complexity scale include the
One-Class Support Vector Machine (OC-SVM) [9], Support Vector Data Description (SVDD) [10],
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Principal Component Analysis (PCA) [11], and kernel-PCA [12]. Anomaly detection approaches
based on more complexity scale include deep SVDD [13], Fully Convolutional Data Description
(FCDD) [14], Variational Autoencoder (VAE) [15, 16], and Adversarial Auto-Encoders (AAE) [17].
However, reconstruction-based models cannot always reconstruct synthetic outputs well based on
susceptibility to background noise. In contrast, one-class classification models depend on neither
synthetic reconstruction nor probabilistic assumptions; therefore, they may be more robust anomaly
detectors.

Pixel-wise segmentation approach is detecting unknown objects in semantic segmentation for per-
ception in the automated driving [18]. Anomaly segmentation methods contains the maximum soft-
max probability [19], out-of-distribution image detector in Neural networks (ODIN) [20], SynBoost
[21], entropy maximization [22], and PAnS [23]. However, semantic segmentation models used to
require lots of annotation cost and heavy memory for training and prediction. This scope of pixel-
wise localizationmust be over-specification for the aim of light applicability in thousands of outdoor
scenes. Separately, patch-wise embedding approach enables to minimize the background noise per
each patch image. To localize the anomalous feature in a patch image, patch-wise embedding-
similaritymodels perform that the normal reference can be the sphere feature containing embeddings
from normal images. In this case, anomaly score is the distance between embedding vectors of a
test image and reference vectors representing normality from the dataset. Embedding-similarity
based models includes the SPADE [24], PaDiM [25], PatchCore [26], FastFlow [27]. However,
these models are based on supervised learning that additionally requires optimization algorithms
such as a greedy coreset selection, a nearest neighbor search on a set of normal embedding vectors,
so the inference complexity scales linearly to the size of training dataset. In contrast, one-class
classification approach can learn efficiently using rare class of imbalanced dataset with fewer scale
for damage detection in civil applications.

1.2 Civil Application and Robustness During Natural Disasters

In civil applications, we have performed the anomaly detection task by focusing on various types
of infrastructure damage, including damage on bridge slabs using human eye inspection, dam em-
bankments using auto-flight drone images, and fallen objects on roads using an Internet Protocol
(IP) camera. For example, we proposed a bridge slab anomaly detector using a U-Net generator with
a patch discriminator containing AAEs and an OC-SVM [28]. Additionally, we proposed a concrete
damage detection method using an auto-flight UAV based on cycleGAN and morphology analysis
for computing anomaly scores [29]. We also proposed a pipeline combining VAE reconstruction
with an isolation forest for detecting fallen objects on road surfaces after a preprocessing translation
operation using pix2pix [30]. However, we could not completely reconstruct the synthetic surface
images of concrete and asphalt outdoors. This is because sunshine and shadow conditions are not
always consistent and unavoidable noise, such as greenmoss under wet conditions and dirty surfaces
following decades of public service, frequently exists. Limited data collected under unified condi-
tions cannot facilitate stable training for reconstruction approaches considering the wide variety of
background noise introduced by seasonal changes in addition to different specifications of outdoor
infrastructures.

Regarding hazard recognition during and following natural disasters, we have performed the anomaly
detection task by focusing on disaster damage, such as fallen trees following typhoons and bro-
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Figure 2: Overview of civil damage classification using deeper FCDDs and a damage heatmap.

ken building roofs, using aerial photographs and winter snowy road monitoring using IP camera
surveillance. We proposed a pipeline for normal land use and typhoon damage classification and
an intensity-scaled heatmap based on a composite matrix of class probabilities per patch [31].
Additionally, to address the winter road safety problem under snowy conditions and make decisions
regarding early morning snowplow application, we proposed a pipeline that performs road surface
translation without mobility using pix2pix and semantic segmentation of snow hazard indices on
road regions without background snow [32]. Furthermore, we proposed adding a preprocessing
operation of night-to-day translation from a lit road at night to road surface conditions during the
day to compute a snow coverage index based on night vision [33]. However, these pipelines were
combined with a deep reconstruction algorithm for a synthetic normal surface and shallow machine
learning algorithm for computing anomaly scores. These combined pipelines could not consistently
achieve high performance based on the limitations of simultaneous accuracy control. For more
robust applications, an end-to-end solution for detecting anomalies based on a convolutional damage
data description and damage heatmap visualization is required.

In this paper, we propose a civil-purpose application to automate one-class damage detection using
an FCDD. We also visualize damage features using the Gaussian upsampling of the receptive field
of a Fully Convolutional Network (FCN). FIGURE 2 provides an overview of infrastructure damage
classification using an FCDD and upsampling-based heatmap explanation. Additionally, to develop
a more robust application, we applied our method to an outdoor domain containing complex and
noisy backgrounds such as natural disaster damage owing to hurricanes, typhoons, earthquakes, and
four-event disasters. These disaster images were collected using various modes, including satellite
imagery, aerial photography, drone-based systems, and panoramic 360 cameras. Furthermore, to
improve the performance of damage detection, we propose deeper FCDDs incorporating other
deeper backbones such as VGG16, ResNet101, and Inceptionv3. We conducted ablation studies
and compared the results to those of the initial baseline FCN.
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2. DAMAGE DETECTION METHOD

2.1 One-class Damage Classification Using Deeper FCDDs

Let 𝑋𝑖 be the 𝑖-th image with a size of ℎ × 𝑤, and let 𝑐 be the center of the hypersphere boundary
between the inlier normal region and outlier anomalous region. We consider the number of training
images, as well as the weight𝑊 of the FCN. The deep SVDD objective function [13], is formulated
as a minimization problem for deep support vector data description as follows:

min
𝑊

1
𝑛

𝑛∑
𝑖=1
∥𝜑𝐵

𝑊 (𝑋𝑖) − 𝑐∥2, (1)

where denotes the 𝜑𝐵
𝑊 (𝑋𝑖) mapping of the deeper CNN to the backbone 𝐵 based on the input image.

The one-class classification model is formulated as follows using the cross-entropy loss function:

L𝐷𝑒𝑒𝑝𝑆𝑉𝐷𝐷 = −1
𝑛

𝑛∑
𝑖=1
(1 − 𝑦𝑖) log ℓ(𝜑𝐵

𝑊 (𝑋𝑖)) + 𝑦𝑖 log[1 − ℓ(𝜑𝐵
𝑊 (𝑋𝑖))], (2)

where 𝑦𝑖 = 1 denotes the anomalous label of the 𝑖-th image and 𝑦𝑖 = 0 denotes the normal label of
the 𝑖-th image. For a more robust loss formulation, the pseudo-Huber loss function was introduced
[34], in Equation (2). We let ℓ(𝑧) be the loss function and define the pseudo-Huber loss as follows:

ℓ(𝑧) = exp(−𝐻 (𝑧)), 𝐻 (𝑧) =
√
∥𝑧∥2 + 1 − 1. (3)

By substituting Equation (2) into Equation (3), we obtain the following expression:

(2) ≡ −1
𝑛

𝑛∑
𝑖=1
(1 − 𝑦𝑖)𝐻 (𝜑𝐵

𝑊 (𝑋𝑖)) + 𝑦𝑖 log[1 − exp{−𝐻 (𝜑𝐵
𝑊 (𝑋𝑖))}] . (4)

Therefore, the deeper FCDD loss function can be formulated as follows:

L𝑑𝑒𝑒𝑝𝑒𝑟𝐹𝐶𝐷𝐷 =
1
𝑛

𝑛∑
𝑖=1

(1 − 𝑦𝑖)
𝑢𝑣

∑
𝑥,𝑦

𝐻𝑥,𝑦 (𝜑𝐵
𝑊 (𝑋𝑖)) − 𝑦𝑖 log

[
1 − exp

{
−1
𝑢𝑣

∑
𝑥,𝑦

𝐻𝑥,𝑦 (𝜑𝐵
𝑊 (𝑋𝑖))

}]
,

(5)
where 𝐻𝑥,𝑦 (𝑧) are the elements (𝑥, 𝑦) of the receptive field with a size of 𝑢 × 𝑣 under the deeper
FCDD. The anomaly score 𝑆𝑖 of the 𝑖-th image is expressed as the sum of all elements of the receptive
field as follows:

𝑆𝐵𝑖 =
∑
𝑥,𝑦

𝐻𝑥,𝑦 (𝜑𝐵
𝑊 (𝑋𝑖)), 𝑖 = 1, · · · , 𝑛. (6)

In this study, we constructed a baseline FCDDwith an initial backbone 𝐵 = 0 and performed CNN27
mapping 𝜑0

𝑊 (𝑋𝑖) from input images 𝑋𝑖 in civil datasets. We also present deeper FCDDs focusing on
the elaborate backbones 𝐵 ∈ {VGG16, ResNet101, Inceptionv3} with a mapping operation 𝜑𝐵

𝑊 (𝑋𝑖)
to achieve a more robust detection. We also present several ablation studies on disaster datasets.

2.2 Damage Mark Heatmap Upsampling From the Receptive Field

CNNmodels withmillions of shared parameters have achieved satisfactory performance for anomaly
detection. However, the reasons for their impressive performance remain unclear. Heatmap visual-
ization techniques can largely be divided into masked sampling and activation map approaches.
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The former category includes occlusion sensitivity [35], and local interpretable model-agnostic
explanations [36]. The main merit of this approach is that it does not require in-depth knowledge of
network architecture, but its main disadvantage is that it requires iterative computations per image
and additional running time for local partitioning, masked sampling, and output prediction. The last
category includes activation maps such as Class Activation Maps (CAMs) [37], and gradient-based
extension (Grad-CAM) [38]. Weighting the feature maps of CAMs is ineffective because it limits
global average pooling and full connection effectiveness in the final layer of a CNN. The main
advantage of the gradient approach is that it can be applied to any layer of a CNN; therefore, it has
significantly improved applicability. However, the main disadvantage is that parallel computation
resources and a moderate running time are required for generating a gradient-based heatmap.

For civil-purpose applications, we selected the receptive field upsampling approach [14], to visual-
ize anomalous damage features using an upsampling-based activation map with Gaussian upsam-
pling from the receptive field of the FCN. The main advantages of the upsampling approach include
reduced computational resource requirements and lower running times. The proposed upsampling
algorithm generates a full-resolution anomaly heatmap from the input of a low-resolution receptive
field 𝑢 × 𝑣. Let 𝐻 ∈ R𝑢×𝑣 be a low-resolution receptive field (input), and let 𝐻′ ∈ Rℎ×𝑤 be a
full-resolution damage heatmap (output). We define a 2D Gaussian distribution 𝐺2(𝑚1, 𝑚2, 𝜎) as
follows:

[𝐺2(𝑚1, 𝑚2, 𝜎)]𝑥,𝑦 ≡
1

2𝜋𝜎2 exp
(
− (𝑥 − 𝑚1)2 + (𝑦 − 𝑚2)2

2𝜎2

)
. (7)

The Gaussian upsampling algorithm from the receptive field is then implemented as follows:

1. 𝐻′ ← 0 ∈ Rℎ×𝑤

2. for all output pixels 𝑑 in 𝐻 ← 0 ∈ R𝑢×𝑣

3. 𝑢(𝑑) ← is upsampled from a receptive field of 𝑑

4. (𝑐1(𝑢), 𝑐2(𝑢)) ← is the center of the field 𝑢(𝑑)

5. 𝐻′ ← 𝐻′ + 𝑑 · 𝐺2(𝑐1, 𝑐2, 𝜎)

6. end for

7. return 𝐻′

Based on the experiments on various datasets, we set the size of the receptive field to 28 × 28 as
a practical value. To generate a damage heatmap, we must unify the display range corresponding
to the anomaly scores ranging from the minimum to maximum value. To strengthen the damage
regions and highlight the damage marks, we define a display range of [min. max./4], whose quartile
parameter is 0.25. Therefore, the histogram of anomaly scores has a long-tailed shape. If we include
the complete anomaly score range, then the color would be weakened to blue or yellow on the
maximum side.
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Table 1: Damage datasets used for the inspection of roads, bridges, and dams.

Dataset Patch size Normal Anomalous
SDNET Pavement crack 2562 3,500 1,826
Bridge rebar exposure 2242 306 230
Bridge steel corrosion 642 2,400 5789
Dam exfoliation, janka 2562 1,075 247

Table 2: Layer types and shapes in the baseline FCDD architecture on CNN27.

No. Layer type Output shape (𝑆, 𝑆, 𝐶) Kernel Learnable parameters.
1 Input 224,224,3 – –
2-4 Conv1-BN-Relu1 224,224,64 3 1,792
5 Maxpool1 112,112,64 – –
6-8 Conv2-BN-Relu2 112,112,128 3 73,856
9 Maxpool2 56,56,128 – –

10-12 Conv3-BN-Relu3 56,56,256 3 295,168
13-15 Conv4-BN-Relu4 56,56,256 3 295,168
16 Maxpool3 28,28,256 – –

17-19 Conv5-BN-Relu5 28,28,512 3 1,180,160
20-22 Conv6-BN-Relu6 28,28,512 3 1,180,160
23-25 Conv7-BN-Relu7 28,28,512 3 1,180,160
26 Conv8 28,28,512 1 264,192
27 Pseudo Huber loss – – –
– total Learnables – 4.4M

3. APPLICATION RESULTS USING THE BASELINE FCDD

3.1 Damage Datasets for Civil Engineering

As summarized in TABLE 1, we demonstrate a civil-purpose application through experimental
studies on pavement cracks from the SDNET dataset [39], bridge rebar exposure and steel paint
peeling, volt nut corrosion, and dam embankment janka.

As summarized in TABLE 2, we constructed an FCN as the initial backbone with 27 layers and
4.4 million learnable parameters, which was termed as CNN27 and contained either a Conv-BN-
ReLU or Maxpool activation function. This initial FCN used for the prototype detector had neither
a skip layer nor residual layer. TABLE 3 summarizes the accuracy values of one-class damage
detection when applied to the damage dataset for roads, bridges, and dams. The Area Under the
Curve (AUC) and recall values are considerably high, suggesting that the FCDD is suitable for civil
damage inspection applications.
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Table 3: Accuracy of damage detection using the baseline FCDD for roads, bridges, and dams.

Model Dataset AUC 𝐹1 Precision Recall
SDNET Pavement crack 0.8955 0.7104 0.6209 0.8301

baseline Bridge rebar exposure 0.9649 0.9052 0.8775 0.9347
FCDD Bridge steel corrosion 0.9889 0.8803 0.7972 0.9827

Dam exfoliation, janka 0.9249 0.7831 0.7469 0.8231

3.2 Training the Damage Detector and Accuracy

The input size was set to 2242 while training the damage detector. We set the mini-batch size to 30
and number of epochs to 50. We used the Adam optimizer with a learning rate of 0.0001, set the
gradient decay factor to 0.9, and set the squared gradient decay factor to 0.99. The training images
were partitioned to set a ratio of 7:1:2 for the numbers of training, calibration, and testing images,
respectively.

3.3 Civil Damage Mark Heatmaps

We visualized damage features using the Gaussian upsampling of the receptive field of our CNN27
network. We also generated a histogram of the anomaly scores of test images for four civil engi-
neering datasets.

Figure 3: Input images (left) of SDNET pavement cracks, results for damage mark heatmaps
(middle), and a histogram (right) corresponding to the baseline FCDD based on CNN27.

First, the middle of FIGURE 3, shows how each heatmap facilitates the visualization of the crack
regions of interest to achieve damage mark explanation. FIGURE 3 reveals that three overlapping
bins of horizontal anomaly scores exist as a result of shadows in images. Second, the middle of
FIGURE 4, shows how each heatmap facilitates the visualization of rebar exposure with either large
or small regions to achieve damage mark explanation. The right side of FIGURE 4, reveals that few
overlapping bins exist in the horizontal anomaly scores. Therefore, the score range is well separated
for rebar exposure detection. Third, the middle of FIGURE 5, shows how each heatmap facilitates
the visualization of paint peeling and volt nut corrosion to achieve damage mark explanation. The
right side of FIGURE 5, reveals that few overlapping bins exist in the horizontal anomaly scores.
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Figure 4: Input images (left) of bridge rebar exposure, results for damage mark heatmaps (middle),
and a histogram (right) corresponding to the baseline FCDD based on CNN27.

Figure 5: Input images (left) of bridge steel corrosion and paint peeling, results for damage mark
heatmaps (middle), and a histogram (right) corresponding to the baseline FCDD based
on CNN27.

Therefore, the score range is well separated for steel paint peeling and corrosion detection. Finally,
the middle of FIGURE 6, shows how each heatmap facilitates the visualization of janka on the
surface of the dam embankment to achieve damage mark explanation. The right side of FIGURE 6,

Figure 6: Input images (left) of dam surface janka, results for damage mark heatmaps (middle), and
a histogram (right) corresponding to the baseline FCDD based on CNN27.
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reveals that three overlapping bins exist in the horizontal anomaly scores because separating janka
features from healthy concrete is visually difficult.

4. ABLATION STUDIES USING DEEPER FCDDs

4.1 Damage Datasets from Natural Disasters

To develop a robust application, we evaluated our method on datasets containing images of natural
disaster damage caused by hurricanes [40], typhoons [31], earthquakes [41], and combinations of
multiple disasters, including collapsed buildings, traffic incidents, fires, and floods [42]. These
disaster images were collected using various modes, including satellite imagery, aerial photography,
drone-based systems, and panoramic 360 cameras. As shown in TABLE 4, we also evaluated our
method via ablation studies using deeper backbones, namely VGG16, ResNet101, and Inceptionv3.

Regarding the dataset used for ablation studies, the hurricane dataset [40], consisted of satellite
images from Texas following Hurricane Harvey, which were divided into two groups: damage and
no damage. This hurricane caused landfall in Texas and Louisiana in August of 2017, causing
devastating flooding and multiple deaths. The typhoon dataset [31], was an aerial photography
dataset containing images with dimensions of 14000 × 15000 pixels recorded in the South Chiba
region 18 days after the typhoon disaster that occurred on September 27 and 28 of 2019. This dataset
was provided by Aero Asahi Co. Ltd. The real land dimension per pixel was 19.6 cm; therefore,
each unit grid square covered an area of 44 × 48 m2. The earthquake dataset [41], was created
as a panoramic change-detection dataset for experiments. This dataset contained 100 panoramic
image pairs of scenes from tsunami-damaged areas in Japan from March of 2011. The size of the
panoramic images was 224×1024 pixels. The multiple-disaster dataset [42], was an aerial image
dataset developed for emergency response applications. The construction of the dataset involved
manually collecting images for four types of disaster events, namely fire/smoke, flood, collapsed
building/rubble, and traffic accidents, as well as an additional class for the normal state.

Table 4: Damage datasets for hurricanes, typhoons, earthquakes, and four-event disasters.

Dataset Patch size Normal Anomalous
Hurricane satellite imagery, flooding 1282 5,000 5,000

Typhoon aerial photography, fallen trees 486 × 442 602 698
Earthquake panoramic, building collapse 224 × 256 400 400

Disaster drone, four events 720 × 1280, 360 × 399 4,390 485

4.2 Training the Disaster Detector with Deeper Backbones

Initially, we trained a baseline FCDDwith the aforementioned backbone CNN27, which had neither
a skip layer nor residual layer. Additionally, we constructed FNCs with deeper backbones based
on VGG16, ResNet101, and Inceptionv3, which contained either skip, residual, or mixed layers of
various scales. TABLE 5 presents the accuracy values for one-class damage detection when apply-
ing the models to the natural disaster datasets representing hurricanes, typhoons, and earthquakes.
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Table 5: Backbone ablation studies on disaster detection using our proposed deeper FCDDs for
hurricanes, typhoons, and earthquakes.

Dataset Model Backbone AUC 𝐹1 Precision Recall
baseline FCDD CNN27 0.9892 0.9518 0.9556 0.9480

Hurricane (satellite), deeper FCDD VGG16 0.9954 0.9781 0.9851 0.9713
flooding deeper FCDD ResNet101 0.9982 0.9856 0.9879 0.9833

deeper FCDD Inceptionv3 0.9965 0.9812 0.9885 0.9740
baseline FCDD CNN27 0.9051 0.8104 0.8384 0.7841

Typhoon (aerial), deeper FCDD VGG16 0.9733 0.8793 0.9471 0.8206
fallen trees deeper FCDD ResNet101 0.9771 0.8315 0.9420 0.7442

deeper FCDD Inceptionv3 0.9672 0.9047 0.9421 0.8702
baseline FCDD CNN27 0.9987 0.9816 0.9638 1.000

Earthquake (panoramic), deeper FCDD VGG16 0.9962 0.9916 0.9916 0.9916
building collapse deeper FCDD ResNet101 0.9987 0.9958 1.000 0.9916

deeper FCDD Inceptionv3 1.000 0.9958 1.000 0.9916
baseline FCDD CNN27 0.9433 0.7896 0.7523 0.8307

Disaster (drone), deeper FCDD VGG16 0.9969 0.9622 0.9589 0.9655
four events deeper FCDD ResNet101 0.9916 0.9323 0.8985 0.9687

deeper FCDD Inceptionv3 0.9925 0.9319 0.9189 0.9453

The AUC and recall values are high on the natural disaster dataset. This suggests that the FCDD
could be applied to complex and noisy damage images for disaster detection. From the perspective
of accuracy, in the case of hurricane satellite imagery and typhoon aerial photography, the FCDD
model with the ResNet101 backbone outperformed the other models with different backbones. In
the case of earthquake drone images, the FCDD model with the VGG16 backbone outperformed
the other models. In contrast, in the case of earthquake panoramic camera images, the FCDDmodel
with the Inceptionv3 backbone outperformed the other models.

Figure 7: Input images (left) of hurricane (satellite imagery) and flood damage, results for damage
mark heatmaps (middle), and a histogram (right) corresponding to our deeper FCDD
based on the ResNet101 backbone.
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Figure 8: Input images (left) of typhoon (aerial photography) and fallen trees, results for damage
mark heatmaps (middle), and a histogram (right) corresponding to our deeper FCDD
based on the Inceptionv3 backbone.

Figure 9: Input images (left) of earthquake (panoramic camera) and building collapse, results for
damage mark heatmaps (middle), and a histogram (right) corresponding to our deeper
FCDD based on the Inceptionv3 backbone.

4.3 Disaster Damage Mark Heatmaps

First, the middle of FIGURE 7, shows how each heatmap facilitates visualization of flooding areas
of interest to achieve damage mark explanation. FIGURE 7, reveals that few overlapping bins exist
in the horizontal anomaly scores. Therefore, the score range is well separated for flood damage
detection. Second, themiddle of FIGURE 8, shows how each heatmap facilitates the visualization of
the fallen tree regions to achieve damagemark explanation. The right side of FIGURE 8, reveals that
three overlapping bins exist in the horizontal anomaly scores because separating fallen tree features
is difficult. Third, the middle of FIGURE 9, shows how each heatmap facilitates the visualization of
constructionwaste to achieve damagemark explanation. The right side of FIGURE9, reveals that no
overlapping bins exist in the horizontal anomaly scores. Therefore, the score range is well separated
for construction waste detection following tsunami damage. Finally, the middle of FIGURE 10,
shows how each heatmap facilitates the visualization of collapsed buildings to achieve damagemark
explanation. The right side of FIGURE 10, reveals that few overlapping bins exist in the horizontal
anomaly scores. Therefore, the score range is well separated for disaster detection.
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Figure 10: Input images (left) of collapsed buildings among four-event disasters (drone), results for
damage mark heatmaps (middle), and a histogram (right) corresponding to our deeper
FCDD based on the VGG16 backbone.

5. CONCLUDING REMARKS

5.1 Robust Damage Detection for Civil and Disaster Applications

We constructed a civil-purpose application to automate one-class damage detection reproducing a
baseline FCDD with a light backbone CNN network containing 27 layers with either Conv-BN-
ReLU or Maxpooling activation. We also visualized damage mark heatmaps using direct Gaussian
upsampling of the receptive field of the FCN. We evaluated the baseline FCDD model on four
experimental targets, namely concrete pavement cracks, rebar exposure on bridge components, steel
corrosion, and dam embankment janka. Our experiments yielded high accuracy of AUC and recall.
Therefore, the lightweight FCDD may be applicable for infrastructure damage inspection. Without
annotating damage regions, the FCDD enhanced damagemarks for visual explanation. To develop a
more robust application, we evaluated a novel solution of deeper FCDDswith pre-trained backbones
of VGG16, ResNet101, and Inceptionv3, and performed ablation studies via comparisons with a
baseline FCDD. We applied our model to datasets representing natural disaster damage caused by
including hurricanes, typhoons, earthquakes, and four-event disasters. We have found that a robust
solution of deeper FCDDs outperformed the baseline FCDD on these complex datasets. A novel
solution of deeper FCDDs provides a powerful tool for damage vision applications utilized in the
high accuracy, explainability, and robustness.

5.2 Future Works

Several promising directions exist for future works to develop more accurate and robust applica-
tions. For more robust training in the presence of background noise, an augmentation preprocessing
operation could be effective for one-class classification models. Such operations include mixup,
RICAP, cutout, and random erasing. To achieve unified applicability, a unified framework could be
constructed, wherein the data domain of each dataset is pre-classified to guide data classification.
Following data domain classification, damage features could be detected using deeper FCDDs. For
efficient data mining, a damage detector based on FCDDs could be used at edge devices such as IP
cameras, drones, aerial photography platforms, and satellites. Instead of collecting all image files,
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only damage-marked images that have a significantly higher score than a predefined threshold could
be efficiently collected. FCDDs require less memory for training a damage detector and computing
an upsampling heatmap.
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