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Abstract
The automatic monitoring of manual assembly processes in production settings increasingly
relies on advanced technologies, including computer vision models. These models are de-
signed to detect and classify events such as the presence of components in an assembly area
and the connection of these components. However, a significant challenge for detection and
classification algorithms is their vulnerability to variations in environmental conditions and
their unpredictable behavior when encountering objects that are not present in the training
dataset. Due to the impracticality of including all potential objects into the training sample,
alternative solutions are needed. This study introduces a model that combines classification
with anomaly detection by leveraging metric learning to create vector representations of
images in amultidimensional space, followed by classification using cross-entropy. A dataset
of over 327,000 images has been prepared for this purpose. Comprehensive experiments were
conducted using various computer vision models, and the performance of each approach was
systematically evaluated and compared.
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1. INTRODUCTION

During themanual assembly process, a variety of objects are simultaneously located in theworkspace,
including parts, tools and partially assembled mechanisms. In order to automatically control this
process, it is essential to solve the problems of detecting and classifying various events. In particular,
it is required to identify all the details, tools, partially assembled mechanisms in the workplace, and
distinguish between correctly and incorrectly performed assembly steps. For example, when a screw
is connected to the rest of amechanism, it is necessary to verifywhether it was attached on the correct
side. Such control helps to prevent manual assembly errors that occur due to the human factor such
as inattention, fatigue or lack of experience of the employee. Additionally, besides verifying the
accuracy of the assembly process, the implementation of safety regulations is being monitored.

2. PROBLEM STATEMENT

The system is designed to control the process of manual assembly of some mechanism. A camera
is installed above the operator’s work area and transmits video to the input of the neural network.
There are various objects on the workspace, including details of a mechanism, partially assembled
structures, tools, as well as foreign objects. The foreign objects could be, for example, parts of other
mechanisms, gloves, garbage and etc.

To solve this problem, a two-step approach was proposed: the detection model is responsible for
detecting objects (including extraneous ones) in the workspace, and then the objects are being
classified.

When using state-of-the-art image detection and classification models such as YOLOv5 [1], there
can be problems with the classification of objects that are not present in the training data. Such
models with high confidence can classify an unknown foreign object to one of the predefined classes,
which may cause a false positive in the control system and, as a result, miss a potential the violation
of the assembly process. As it is possible to include all possible objects in the training dataset that
may appear on the workspace in the future, a modification to the formulation of the classification
problem is proposed.

In order to train a classification model that is resistant to various noises and foreign objects, it
is proposed to simultaneously solve two tasks during the training phase: anomaly detection and
classification.

3. DATASETS

To train the models, datasets containing images of mechanism details, tools, and assembly stages
of various objects were collected, including photos of people, animals and etc. During training,
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all images from datasets that do not represent the assembled mechanism details were labeled as
extraneous. The training set contains over 32k images, the validation set 48k, and the test set 29K.
Examples of the images from the datasets are shown in FIGURE 1.

Figure 1: “Bicycle parts” dataset

4. MODEL DESCRIPTION

To build vector representations of images, various pre-trained computer visionmodels were utilized.
For the subsequent classification of vectors, a small fully connected network was applied.

Formally, let 𝑋 ⊂ 𝑅𝐷 represent a set of images, where 𝐷 = 3 × 192 × 192 denotes the dimen-
sionality of the images. In addition to images, let 𝑌 denote their corresponding labels, where
𝑌 ⊂ {−1, 0, . . . 𝐶 − 1}. The class labeled as “-1” is a special category for images that are unrelated
to the problem being addressed, such as those containing foreign objects.

During the learning process, the model learns the mapping 𝑋 ↦→ 𝑋 ⊂ 𝑅𝑑 , where 𝑑 ≪ 𝐷, effectively
reducing the dimensionality of the feature space. Given the issue of the “curse of dimensionality”
in high-dimensional vector spaces, it is not feasible to set large values for 𝑑. Furthermore, when
addressing the problem of classifying vector representations using a fully connected network, the
condition 𝑑 ≤ 𝐶 + 1 must be satisfied. Otherwise, the number of classes may become smaller than
the dimensionality of the vector, potentially resulting in poorly conditioned weight matrices and
significant overfitting of the network. In the models considered, the value of 𝑑 was varied between
8 and 32, depending on the number of classes in the dataset.

The vector representations of objects constructed in this manner are utilized both for anomaly
detection and classification tasks.

The Quadruplet Loss function minimizes intra-class distances while maximizing inter-class ones,
thereby addressing the anomaly detection problem through pairwise distances. In this context, in
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addition to the C classes in the annotation, an extra class of unrelated images is introduced. To
accommodate this, the standard Quadruplet Loss implementation has been modified. Specifically,
any object from one of the 𝐶 classes (excluding foreign objects) can be selected as a reference (a)
and a positive (p) example. A negative example (𝑛1) example is then chosen from any of the 𝐶 + 1
classes (including foreign objects), while the fourth example (𝑛2) is selected from any of the 𝐶 + 1
classes, excluding the object classes (𝑎, 𝑝, 𝑛1).

To address the classification of vector representations, a fully connected neural network is imple-
mented to perform the mapping 𝑋 ↦→ 𝑅𝐶+1. The output, consisting of 𝐶 + 1 values, is subse-
quently transformed into probabilities representing the likelihood of membership in the correspond-
ing classes using the SoftMax function.

4.1 Model Architecture

Several pre-trained computer vision models were evaluated, including Swin Transformer, Mo-
bileNet V3, and EfficientNetV2 [2]. A more detailed description of these models is provided in
TABLE 1.

Table 1: Pre-trained models

Model weights Accuracy@1 Accuracy@5 Params GFLOPS

Swin_T_Weights.IMAGENET1K_V1 81.474 95.776 28.3M 4.49
MobileNet_V3_Large_Weights.IMAGENET1K_V2 75.274 92.566 5.5M 0.22
EfficientNet_V2_S_Weights.IMAGENET1K_V1 84.228 96.878 21.5M 8.37

To solve the problem of classifying vector representations having dimension d, a small fully con-
nected network was implemented. Given that the pre-trained computer vision model generates
vector representations well-suited for clustering and anomaly detection tasks (based on the opti-
mized Quadruplet Loss function), complex architectures for the classification layer were omitted.
Thus, during the optimization of the classification loss function, the pre-trained model is trained to
minimize the Quadruplet Loss, while also ensuring that the resulting vectors are compatible with
classification by a simple neural network.

As a result, a two-layer fully connected network with batch normalization and the LeakyReLU
activation function was employed, featuring an internal dimension 𝑑.

4.2 Loss Function

The QuadrupletLoss function [3] was utilized to address the anomaly detection problem based on
pairwise distances between vector representations of images. This loss function is subsequently
denoted as 𝐿𝑞𝑢𝑎𝑑 . Additionally, the hard example mining method was applied, introducing an
additional penalty for the most challenging object pairs for the model.
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For the classification task, the FocalLoss function [4], a modification of CrossEntropyLoss, was
employed. This loss function incorporates a hyperparameter that applies an additional penalty to
the most challenging objects for the model and is denoted as L_c .

The final loss function, 𝐿 = 𝐿𝑞𝑢𝑎𝑑 + 𝑤𝑐 • 𝐿𝑐, represents the weighted sum of the two loss
functions. Given that the datasets contain a varying number of classes, ranging from 6 to 47, the
coefficient 𝑤𝑐 was introduced to normalize the classification loss function. If the model predicts
equal probabilities for all 𝐶 classes, the value of the loss function for a single object will be ln(𝐶).
Therefore, the normalization coefficient was set ast 𝑤𝑐 = 1

ln(𝐶 ) .

5. EXPERIMENTS

5.1 Datasets Preparation

To expand the training dataset, a series of augmentations were applied, including Athenian transfor-
mations, specular reflection, adjustments to brightness and contrast, MotionBlur, ISONoise, image
resolution reduction, RandomAutocontrast, RandomEqualize, RandomPosterize, ColorJitter, Gaus-
sian noise, and modifications to the illumination histogram. Examples of the augmented images
from the training sets are presented in FIGURE 2.

Figure 2: Examples of augmented images

5.2 Model Training

For all datasets, models were trained for 20 epochs with early stopping. To implement the hard
example mining method, the proportion of the most complex examples to which an additional
penalty is applied was gradually adjusted using a linear schedule. Specifically, this proportion
decreased from 1.0 at epoch 2 to 0.1 at epoch 7 and remained constant thereafter.

To address class imbalance in the training dataset, weighted sampling was employed. Given the
introduction of an additional class for extraneous images, the proportion of this class was experi-
mentally set to 1/3, with the remaining 2/3 evenly distributed among the other classes.

The AdamW optimizer was used with the following parameters: weight_decay = 0.01 and learning
rate (lr) = 0.005.
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6. RESULTS

6.1 Metrics

Table 2: Metrics of trained models on test datasets

Model Balanced
Accuracy F1 Precision Recall mAP Precision@k mAP@k

Bicycle Parts
Swin Transformer 0.9858 0.9777 0.9704 0.9858 0.9971 0.9814 0.9822
MobileNetV3 0.9744 0.9761 0.9784 0.9744 0.9959 0.9825 0.9830
EfficientNetV2 0.9919 0.9860 0.9806 0.9919 0.9981 0.9897 0.9903
Grinder Details
Swin Transformer 0.9745 0.9749 0.9754 0.9745 0.9961 0.9679 0.9681
MobileNetV3 0.9776 0.9802 0.9831 0.9776 0.9958 0.9769 0.9771
EfficientNetV2 0.9710 0.9752 0.9796 0.9710 0.9970 0.9740 0.9742
Drone Tools
Swin Transformer 0.9305 0.9282 0.9306 0.9305 0.9808 0.9426 0.9427
MobileNetV3 0.9147 0.9228 0.9378 0.9147 0.9720 0.9478 0.9481
EfficientNetV2 0.9414 0.9486 0.9584 0.9414 0.9899 0.9584 0.9582
Drone Details
Swin Transformer 0.9877 0.9894 0.9911 0.9877 0.9992 0.9841 0.9842
MobileNetV3 0.9661 0.9766 0.9887 0.9661 0.9967 0.9901 0.9902
EfficientNetV2 0.9774 0.9824 0.9882 0.9774 0.9987 0.9819 0.9821
All Details
Swin Transformer 0.9919 0.9909 0.9904 0.9919 0.9978 0.9937 0.9938
MobileNetV3 0.9816 0.9823 0.9834 0.9816 0.9932 0.9863 0.9863
EfficientNetV2 0.9717 0.9715 0.9726 0.9717 0.9945 0.9704 0.9718

The results presented in the table demonstrate that the models perform nearly optimally on the
test subsets of the datasets, as indicated by the considered metrics. An analysis of the obtained
results revealed that, despite the application of augmentations, the datasets predominantly consist
of relatively simple examples. Below are examples illustrating the models’ performance on an
assembly table under conditions simulating real-world scenarios, along with the corresponding
metric values.

6.2 Performance

TABLE 3 shows the number of model parameters and GFLOPs required to process a single image
of size 3 × 224 × 224 for all pre-trained computer vision models employed in this study.

The performance of the entire system was evaluated using the EfficientNetV2 model, which was
trained for video processing. AnNVIDIAGeForce RTX 3060Mobile GPU (3840 cores, 120 TMUs,
48 ROPs, 6 GB GDDR6 memory, 192-bit bus width) and a single-threaded application utilizing
OpenCV for camera video processing were employed.
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Table 3: Number of parameters and GFLOPs of models

Final model Params GFLOPS

Swin Transformer 28.3M 4.49
MobileNetV3 5.5M 0.22
EfficientNetV2 21.5M 8.37

Object detection was performed using the YOLOv5 neural network, which had been previously
trained on the dataset for this task. All objects detected within the frame were processed by the
EfficientNetV2 model in a single batch.

The measurements were conducted 10 times, and the sample averages and standard deviations were
computed. The results are presented in TABLE 4. The term “All time” refers to the total processing
time for one frame by the entire system, while “Model time” indicates the processing time for the
batch of images by the EfficientNetV2 model.

Table 4: Frame processing time

Batch size All time (ms)
mean

All time (ms)
std

Model time (ms)
mean

Model time (ms)
std

(65, 3, 192, 192) 256,2 34,78 16,6 2,07
(44, 3, 192, 192) 216,6 12,65 14,6 1,07
(32, 3, 192, 192) 158,1 9,56 14,9 1,20
(16, 3, 192, 192) 138,8 6,34 12,7 3,06
(14, 3, 192, 192) 160,2 13,46 12,9 2,02
(5, 3, 192, 192) 79,6 7,18 13,9 2,47
(2, 3, 192, 192) 85,1 5,97 15,6 3,84

6.3 Building Statistical Estimates

To analyze vector representations of images obtained using the Deep Metric Learning method, a
t-SNE [5] vector transformation was applied, alongside the construction of box-and-whisker plots
for the distributions of intra-class and inter-class distances. Additionally, the probabilities of first-
and second-kind errors were estimated.

6.3.1 Intra-class distances

The box-and-whisker diagrams titled “Inter-class distances” illustrate the distributions of intra-class
distances. The edges of the box represent the first and third quartiles, while the whisker borders
correspond to the 0.025 and 0.975 quantiles. The median is indicated by the orange line. The
Euclidean distance metric was used in all graphical representations.
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6.3.2 Inter-class distances

The box-and-whisker diagrams titled “Intra-class distances” display the sample distributions of
inter-class distances (i.e., distances between each class and all other classes). The same graph
parameters used in the “Inter-class distances” diagrams were applied.

6.3.3 Probabilities of errors of the 1st and 2nd kind

For a given class 𝐶𝑖, consider a classifier based on pairwise distances with the null hypothesis 𝐻0,
which asserts that objects 𝑥 of class 𝐶𝑖 have an average distance to objects of the selected class that
is smaller than the quantile 𝑞:

1
| {𝑦 : 𝑐𝑙𝑎𝑠𝑠 (𝑦) = 𝐶𝑖} |

∑
𝑦:𝑐𝑙𝑎𝑠𝑠 (𝑦)=𝐶𝑖

| |𝑥 − 𝑦 | | < 𝑞, 𝐻0 : {𝑐𝑙𝑎𝑠𝑠 (𝑥) = 𝐶𝑖}

By considering 𝑞 = 𝑞1−𝛼 – the quantile of the order of 1 − 𝛼 of the distribution of the average
distance from an object of class 𝐶𝑖 to other objects of the same class 𝐶𝑖, a classifier is obtained with
a first-kind error probability of approximately 𝛼. The probability of the second-kind error can be
estimated by calculating the probability mass of the tail of the distribution.

Similarly, by considering 𝑞 = 𝑞𝛽 – quantile of the order 𝛽 of the distribution of the average distance
from an object of class𝐶𝑖 to objects of other classes𝐶 𝑗 , 𝑖 ≠ 𝑗 , a classifier is obtained with a second-
kind error probability of approximately 𝛽. The probability of the first-kind error can be estimated
by calculating the probability mass of the tail of the distribution.

The values 𝛼 = 𝛽 = 0.025 were selected.

6.4 Results on the “All Details’’ Dataset

The results on the ”All details” dataset are presented in FIGURE 3 - FIGURE 5 and TABLE 5.

Table 5: Estimates of the probabilities of errors of the 1st and 2nd kind, dataset “All details“ (all
other classes have zero error values)

Class By 𝒒1−𝜶 By 𝒒𝜷

1st kind 2nd kind 1st kind 2nd kind

38 0.25 0.020 0.001 0.25
43 0.001 0.009
44 0.000 0.001
45 0.000 0.002
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Figure 3: t-SNE conversion of vector representations of images for the “All details“ dataset obtained
using the Swin Transformer model

7. ANALYSIS OF THE RESULTS OF THE MODELS

In addition to evaluating the models on the test portions of the datasets, they were tested on pho-
tographs captured directly during the assembly process. This section presents the results of the
models’ performance on these images.

7.1 Results of the Detection Model

Object detection in the images was performed using the YOLOv5model, which had been previously
trained on a custom dataset containing images of various objects annotated with their bounding
boxes.

The current model demonstrates satisfactory results when the camera is positioned perpendicularly
to the table; however, its performance deteriorates significantly when the camera is placed near the
table at an angle. Overall, it detects approximately half of the objects of interest. Future work will
involve collecting additional data to train the detection model and exploring other models, such as
YOLOv8.
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Figure 4: Box-and-whiskey diagrams for intra-class distances, dataset “All details”

7.2 Results of the Detection Model

The results were compared with the works of Deep Quadruplet Network [3], QuadNet [6] and FIDI
[7], in which the authors solve the re-identification problem, also using various combined loss
functions. Their authors used the CUHK, VIPeR, Market1501, DukeMTMC datasets created to
solve the person re-identification task, as well as the MVB dataset for the baggage re-identification
task.

Because different approaches employ diverse model architectures, loss functions, and metrics, the
accuracy metric was chosen for comparison, as it is reported in all articles across all datasets.

The results of the trained model sre shown in the TABLE 6. They are comparable according to
the selected accuracy metric with the results from the work [3, 6, 7]. Thus, a classification model
capable of processing extraneous objects by assigning them to a special class has been developed,
while maintaining performance quality for the other classes.

The results shown in TABLE 6 differ for the worse from the results of the models on the test part of
the datasets (TABLE 2). This is a consequence of the lack of complicated examples in the custom
datasets. To improve the performance of the model during the build process, it is planned to expand
the custom datasets.
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Figure 5: Box-and-whiskey diagrams for inter-class distances, dataset “All details”

Table 6: Comparing our models with other works

Model Dataset Accuracy

Deep Quadruplet Network CUHK03 74.47 %
CUHK01(p=486) 62.55%
CUHK01(p=100) 79.00%
VIPeR 48.42%

QuadNet MVB 80.30%
FIDI Market1501 94.50%

DukeMTMC 88.10%
CUHK03-D 72.10%
CUHK03-L 75.00%

EfficientNetV2 (Custom) Bicycle Parts (Custom) 70.14%
MobileNetV3 (Custom) Grinder Details (Custom) 98.13%
Swin Transformer (Custom) All Details (Custom) 66.81%

7.3 The Resulting Vector Representations

To visually assess the constructed vector representations of images, which are subsequently used
to address the classification task, t-SNE transformation graphs of these vectors were generated.
For all datasets, the majority of objects form distinct, separable clusters. Objects located at the
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boundaries of their clusters or classified as outliers may be incorrectly assigned to alternative classes
based on clustering. To estimate the proportion of such objects and assess their proximity to other
classes, box-and-whisker diagramswere constructed, and estimates of the first and second kind error
probabilities of a simple classifier were also calculated.

Analysis of the box-and-whisker diagrams reveals that for certain classes, the constructed vector
representations exhibit a significantly larger spread of pairwise distances compared to other classes.
Notably, this is observed for the “-1” class (representing extraneous objects), which is attributed
to the high diversity of objects within this class. For instance, both a photo of a box and a photo
of an animal may be categorized under this class in the custom datasets. In contrast, for other
classes, a wide spread of pairwise distances may indicate suboptimal quality of the image vectors
corresponding to these classes.

The error estimates for the first and second kinds provide a means of evaluating the quality of
the constructed vector representations. Although a more complex classifier is employed in the
model than the decision rule based on quantile distributions of pairwise distances, the obtained
estimates facilitate the identification of problematic classes. These classes may require additional
data collection to improve the accuracy of the vector representations.
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