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Abstract

In this study we consider adaptive power beaming with a fiber-array laser transmitter system
in presence of atmospheric turbulence. For optimization of power transition through the
atmosphere a fiber-array is traditionally controlled by stochastic parallel gradient descent
(SPGD) algorithm where control feedback is provided via a radio frequency link by an
optical-to-electrical power conversion sensor, attached to a cooperative target. The SPGD
algorithm continuously and randomly perturbs voltages applied to fiber-array phase shifters
and fiber tip positioners in order to maximize sensor signal, i.e. uses, the so-called, “blind”
optimization principle.

By contrast to this approach a prospective artificially intelligent (AI) control systems for
synthesis of optimal control can utilize various pupil- or target-plane data available for the
analysis including wavefront sensor data, photo-voltaic array (PVA) data, other optical or
atmospheric parameters, and potentially can eliminate well-known drawbacks of SPGD-
based controllers. In this study an optimal control is synthesized by a deep neural network
(DNN) using target-plane PVA sensor data as its input. A DNN training is occurred online
in sync with control system operation and is performed by applying of small perturbations
to DNN’s outputs. This approach does not require initial DNN’s pre-training as well as
guarantees optimization of system performance in time. All theoretical results are verified
by numerical experiments.

Keywords: Fiber-array, Power beaming, SPGD optimization, Reinforcement learning, Self-
learning, AI controller
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1. INTRODUCTION

The interest in the development of fiber-array laser transmitter systems [1, 2], has been
steadily growing over the past two decades due to its compact size and low cost of system
components comparing with conventional systems having the same transmitting aperture
size. The presence of a beam control system makes fiber-arrays capable for direct inte-
gration and digital implementation of exotic beam shaping [3], adaptive mitigation of the
propagation-medium-induced phase aberrations [4], target tracking and beam pointing. All
this allows one to consider fiber-array as a potential laser transmitter system for a wide class
of optical applications – from directed energy to free-space optical communications [2, 4],
additive manufacturing [5], and power beaming [6].

Wireless delivering energy to remote and hard-to-reach power consumers with laser trans-
mitters is promising technology especially taking into account the explosive growth number
of rechargeable portable devices and equipment. In recent power beaming experiments
with single-aperture laser transmitters charging of remotely located mobile devices including
drones [9], vehicles [7], and even cell phones [8], were performed where for optical-to-
electrical power conversion photo-voltaic array (PVA) panels attached to a particular device
were used. As far as all mentioned experiments occurred in lower Earth atmosphere authors
especially reported significant dependence of laser energy transfer efficiency on atmospheric
conditions along a beam propagation path. By this reason in [7], only 25%1 of transmitted
laser energy was delivered to a mini rover and in [8], for increasing of energy transfer ef-
ficiency authors optimized laser beam position trying to keep it near PVA center. Thus, in
realistic conditions appropriate power beaming efficiency can be achieved using adaptively
controlled laser systems only including fiber-arrays.

Consider the problem of optimal energy transfer through the atmosphere onto remote high-
resolution PVA panel. Let for mitigation of the atmospheric-induced received power losses
from a non-optimal match between photovoltaic conversion and the projected laser beam
footprint, errors in laser beam pointing, turbulence-induced beam spread, wander and dis-
tortion controlled fiber-array laser transmitter system is used. Suppose that conformal laser
beam outgoing from an array of optical collimators passes through the turbulent atmosphere
and illuminates PVA (see FIGURE 1). The PVA performs optical-to-electrical power con-
version by delivering the transferred energy to a power consumer and in addition has a
radio-frequency (RF) link with multi-channel master oscillator/power amplifier (MOPA)
fiber system. This link allows rapid (in comparison with turbulence changing time) transfer
of PVAgrid power values directly to the control systemwhere this information can be used for
optimization of phase shifts and fiber tip positions. The control efficiency in power beaming
is traditionally measured using several well-known indicators (or metrics) including over-
all transferred energy magnitude and a parameter responsible for matching optimal power
distribution on PVA.

The most common fiber-array optimization controller uses stochastic parallel gradient de-
scent (SPDG) algorithm for syntheses of the control. Optimization of metric value by SPGD
algorithm is continuously performed by generating and applying of small random pertur-
bations to fiber-array actuators. If current perturbation increases (for metric maximization

1 This estimation includes PVA transfer energy efficiency also.
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Figure 1: Notional schematics of the fiber-array transmitter system in the problem of power beaming through turbulent
atmosphere.

problem) metric value, the optimization step is considered as completed, otherwise, depend-
ing on algorithm type, a new perturbation is generated or existing perturbation is applied
with an opposite sign. Modern SPGD controllers used for fiber arrays coherent combining
allow to perform up to 5× 105 parallel optimization steps per second that provides desirable
performance for a wide range of fiber-array configurations, propagation scenarios and atmo-
spheric conditions. However this technique has several well-known drawbacks: (1) SPGD
convergence is rapidly decreasing with increase of the number of subapertures above 50-100,
(2) SPGD optimization algorithm is extremely sensitive to perturbation statistics and type of
gain coefficient that in each particular case are chosen empirically, (3) SPGD realizes, so-
called, “blind” optimization strategy and ignores any additional information available for
the analysis and potentially useful for synthesis of the control, for example, PVA power
distribution as in the considered case.

One of the most promising way to avoid aforementioned drawbacks is an enhancing of
SPGD optimization algorithm using state-of-the-art deep learning (DL) methodology. The
DL paradigm supposes to utilize deep neural networks (DNN) of various types and topologies
for extraction and analyzing of information about interaction of the control system with envi-
ronment in order to synthesize optimal control. Using of DNN in a control system supposes to
have some training mechanism and here two baseline approaches can be proposed: (a) offline
training when the controller’s DNN is specially pretrained in offline regime and only than is
applied for real-time control purposes and (b) self-learning when randomly initiated DNN is
continuously interacting with changing environment is trained on-the-fly using performance
metrics as stimulus for learning and observed environment characteristics as the input [10].

There are numerous papers (see, for example, [11, 12], and literature in these papers) ded-
icated to coherent beam combining using DNN with offline training strategy. Methods of
DNN utilization for syntheses of optimal control are significantly varied for different authors
and include direct generation of control by DNN using target-plane measurements [13],
generation by DNN of some initial pupil-plane phase distributions [14], and more sophis-
ticated cascaded schemes where DNN is operated in pair with SPGD [15]. However, this
methodology has also several important drawbacks: (1) offline training technique supposes
to manually collect or simulate huge training datasets that should cover all potential system
application scenarios, (2) one should guarantee that optical system will always operate in
the same environmental conditions as represented in this training set, so that any extension
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of condition ranges or any system modification automatically requires to supplement (in
the best case) or completely rebuild (in the worst case) of training set with the following
DNN retraining. In other words, the offline learning scheme does not support any system
adaptation to any changes and primary suitable for the systems which are interacted with the
statistically constant environments.

In opposite, reinforcement learning (RL) approach [16], initially is designed for operation
in unknown and changing environment. The major idea of this methodology is to place
completely untrained intellectual agent (controller, in our terminology) in some environment,
to provide their continuous mutual interaction and to define some reward function that should
be maximized during these interactions. Here, the reward function plays a role of stimulus
to agent’s learning and its adaptation to environment changes, stimulus to forget unusual
or outdated information about the environment or about interaction with the environment,
stimulus to follow optimal trajectories. The agent-environment interaction in RL is consid-
ered in terms of “action-state” space where agent’s action is typically represented in the form
of multidimensional control vector and for describing of environment state available and
currently observed information (f.e., instantaneous sensor measurements, snapshot images,
etc.) is used.

The problem of fiber-array coherent beam combining can be classified in RL paradigm as
“multidimensional continuous action space” problem that commonly considered using deep
Q-learning [17], approach or more precisely deep deterministic policy gradient (DDPG)
algorithm [18]. In this approach two separate DNN are considered – one a-DNN represents
intellectual agent as well as other one q-DNN is responsible for simulation of environment
response. Traditionally this response is chosen in the form of Bellman’s Q-function [19], so
that q-DNN will approximate it during agent-environment interaction. The training process
is synchronized for both DNNs – an agent performs some (initially random) actions, explores
environment’s reaction and takes reward thereby training q-DNN that provides local approx-
imation of environment response and allows to predict this response for future local actions.
Built approximation of Q function allows to take (symbolic) gradient over q-DNN’s inputs,
then to use this gradient for correction of a-DNN trainable weights in accordance with policy
gradient theorem and hence to improve agent future actions.

The proposed DDPG algorithm can be obviously applied to considered power beaming prob-
lem if [20] , for example, as the reward function one takes aforementioned system per-
formance metric, as intellectual agent consider beam controller and as environment state
– target-plane PVA intensity distribution and instantaneous metric magnitude. However,
this straightforward approach has one important drawback – in this case one factually needs
to build DNN approximation of metric response to all current and following controller’s
actions (i.e. Q-function for this case). For optical systems operated in realistic conditions
performance metric depends on numerous factors, metric reaction on piston/tip-tilt control is
non-linear and can be changed in time, number of control channels is big and these channels
are strongly coupled. In these conditions there is no chance to build robust, accurate and static
approximation ofQ-function that will automatically lead to poor training of controller’s DNN
and completely avoid all advantages given by RL.

In this paper we introduce SPGD-based training procedure of DNN controller, where instead
of consideration and differentiation of Bellman’s Q-function we use SPGD-type estimation
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of environment’s response gradient. This technique is especially suitable for rapidly changing
non-linear environments and multidimensional control space specific for the problem of
energy transferring through the atmosphere. The idea is to continuously pass all available
incoming information about environment state (PVA intensity distribution, metric) and con-
troller’s action (actuator voltages) to DNN input in order to synthesize optimal control in
these particular conditions and time moment. At the same time DNN outputs are continu-
ously perturbed using SPGD-type procedure that provides self-learning of DNN as well as
guarantee minimization of performance metric in time. In this paper this type of control will
be called “active AI control” meaning that here simultaneously two independent processes
are taking place – “active” SPGD-type metric optimization with parallel DNN training and
“passive” DNN inference with synthesis of the control.

In Section 2 the problem statement, theoretical background of SPGD-based optimal control
and active AI control will be given. In Section 3 implementation details for the proposed in
Section 2 approachwill be stated. In Section 4 training capabilities and performance ofmetric
optimization for the proposed AI control system is demonstrated via numerical experiments.

2. BASIC CONSIDERATIONS

In this section we introduce the power beaming problem as well as basic principles of SPGD
and active AI control.

2.1 The Power Beaming Problem

Consider optical wave propagation along (parallel to) the axisOz of Cartesian systemOxyz,
assuming that the fiber-array transmitter is located at the coordinate originO and PVA panel
– at the point (0, 0, L), where L > 0 is propagation distance, see FIGURE 2 on the right.
Let r = (x, y, z) be a vector in Oxyz, ρ = (x, y) is a plane coordinates and t ≥ 0 denotes
time. Propagation of linear polarized monochromatic optical waves with complex amplitude
U(r, t) = U(ρ, z, t) through an optically inhomogeneous medium is commonly described
by the following parabolic equation [21]:

2ik
∂U(ρ, z, t)

∂z
+∇2

⊥U(ρ, z, t) + 2k2n(ρ, z, t)U(ρ, z, t) = 0, (1)

where k is the wave number, ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2 and n(ρ, z, t) = n(r, t) is a random

function corresponding to the refractive index fluctuations having zeromeanvalue ⟨n(r, t)⟩ =
0. The notation ⟨·⟩ is used to describe statistical averaging over the ensemble of refractive
index realizations. The boundary conditions for complex amplitude U at the plane z = 0 are
defined as:

U(ρ, z = 0, t) = U0(ρ, t),

where U0(ρ, t) is the optical field complex amplitude at the transmitter plane.
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Figure 2: Fiber-array aperture with Nsa = 19 subapertures (left) and geometry of optical field propagation (right).

Assume that the fiber-array transmitter system hasNsa hexagonal subapertures (see FIGURE
2, left) and each particular subaperture is described by a stepwise functionHn(ρ) = H(ρ−
ρn), n ∈ {1, ..., Nsa}, where ρn = (xn, yn) is coordinate of subaperture center and

H(ρ) =

{
1, |ρ| ≤ d/2,

0, otherwice,

where d > 0 is subaperture diameter. For the complex amplitude of optical field at the
fiber-array output (pupil) plane {z = 0} one has:

U0 (ρ, t) = A0

Nsa∑
n=1

Hn (ρ) e
−|ρ−ρn|

2/a2
0 eikφn(ρ,t), (2)

where A0 ≥ 0 is the constant dependent on the power transmitted through the fiber-array
and φn (ρ, t) = sn(t) · (ρ− ρn) + cn(t), n ∈ {1, ..., Nsa} is the linear over ρ function
representing phase component of the outgoing field in the n-th subaperture at time t ≥ 0.
Here sn(t) = (sn,x(t), sn,y(t)) ∈ R2 and cn(t) ∈ R are, respectively, tip-tilt and piston
components of the n-th beamlet and dot denotes scalar product of two vectors. The beamlet
radius a0 corresponds to e−1 fall-off in intensity.

Adaptive beam shaping and compensation of turbulence-induced aberrations can be per-
formed using control of either solely piston {cn(t)}Nsa

n=1 or piston and tip-tilt {sn(t)}
Nsa
n=1 phase

components. For future considerations denote as K the number of all control parameters
so that K = Nsa for single piston control (then sn,x(t) and sn,y(t) are constants for any
n ∈ {1, ..., Nsa} and t ≥ 0) orK = 3Nsa for both piston and tip-tilt control.

2.2 Performance Metric for Power Beaming Problem

Now suppose that considered fiber-array transmitter is equipped by a control system op-
erating with aforementioned phase components. The control performance is traditionally
estimated using several well-known metrics suitable for particular transfer energy task. For
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example, overall fiber-array transmitted power is accounted using integral power-in-the-
bucket (PIB) metric, for a beam shaping problem this metric should be accompanied with
the term, accounting power distribution on PVA, for directed energy applications Strehl ratio
dedicated to power peak-to-valley measurement is commonly used. The PIB and Strehl ratio
can bemeasured directly using photo-voltaic sensors or computed using target-plane intensity
distribution I (ρ, z = L, t) = |U (ρ, z = L, t)|2 in case if PVA is attached to the target.

In this study we will suppose that at the target-plane z = L there is a high-resolution square
PVA centered at the point (0, 0, L) with sides having the size D > 0 and parallel to x and y
axes. As the performance metric we will consider, so-called, smooth Strehl ratio:

Jt = J(t) =
1

Jvac

∫
I (ρ, z = L, t) e−|ρ|2/β2

d2ρ, (3)

where β > 0 is smoothing parameter and Jvac is normalization factor for providing the
condition Jt ≤ 1 for any t ≥ 0. This condition will be guaranteed if we consider free-space
propagation of the initial complex field U0 with n(ρ, z, t) ≡ 0 in (1), take corresponding
target-plane intensity distribution Ivac (ρ, z = L, t) and compute Jvac as:

Jvac = max
{∫

Ivac (ρ, z = L, t) e−|ρ|2/β2

d2ρ

}
, (4)

where maximum is taken over all K control parameters. Note that all target-plane intensity
distributions are measured on PVA (see FIGURE 1) so that integration in (3) and (4) is also
limited to PVA area only.

2.3 Basic Principles of SPGD Control

Denote the entire set of control variables as u =
(
u1, ..., uK

)
. Consider general case when

performance metric depends on a vector of some pupil- or target-plane field characteristics
It = It (ρ;u) =

(
I1 (ρ, t;u) , ..., IM (ρ, t;u)

)
,M ≥ 1, where each particular characteristic,

in turn, depends on control parameters as well as can be considered as spatial and time
dependent function. This notation covers metric dependence on one- or two-dimensional
field characteristics such as time series, intensity and phase distributions. For example, for
considered above smooth Strehl ratio one has M = 1 and I1 (ρ, t;u) = I (ρ, z = L, t)
is time-dependent target-plane intensity image and for conventional Strehl ratio I1 (t;u) =
I (ρ = 0, z = L, t) is time series.

Then, for the performance metric one has:

Jt = Jt (u) = J (It (ρ;u))

and the problem of synthesis of optimal control can be formulated as follows:
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Jt (u) → max
u

. (5)

The optimization problem (5) can be numerically solved using well-known gradient descent
optimization algorithm. Let an optimal control trajectory be ut = u (t) =

(
u1t , ..., u

K
t

)
=(

u1 (t) , ..., uK (t)
)
. Taking as the time increment the unity step the iteration process will

have the form:

ukt+1 = ukt + γt
∂Jt
∂uk

duk, k ∈ {1, ...,K} , (6)

where γt = γ (Jt, t) is time-dependent gain coefficient and
{
duk
}K
k=1

are positive scaling
factors corresponding to different control sensitivities. In case when metric gradient over
control parameters can be derived analytically or numerically the algorithm (6) (or its nu-
merous variations), as the rule, provides rapid and robust computation of optimal trajectory’s
approximation. However, for real-world physical systems when Jt (u) is measured in real-
time regime and computation of metric gradient is performed via applying component-wise
perturbations to control variables the iteration process (6) has important drawback. The
point is that with increasing of the number of control parameters and under assumption of
sufficiently fast changing of physical conditions (f.e., atmospheric turbulence is changing
in approximately 1 ms) the calculation of gradient in (6) will be lag behind environmental
changes and as the result the gradient approximation will be inaccurate.

The SPGD algorithm [22, 23], is dedicated to avoid this problem. The major idea of SPGD
optimization is in fast estimation of metric gradient using simultaneous perturbations of all
control parameters. Let ut+1 = ut + δut, where δut =

(
δu1, ..., δuK

)
is a small increment

that can be applied to controls in each time step. Then Jt+1 = J (It+1 (ρ;ut+1)) = Jt+ δJt
and

δJt = Jt+1 − Jt ≈
K∑
k=1

∂Jt
∂uk

δukt +

M∑
m=1

∂Jt
∂Im

∂Imt
∂t

. (7)

Under assumption of relatively small changing of environment characteristics It per one time
step in comparison with their reaction on the control perturbation, i.e. if:

∣∣∣∣∂Imt∂t
∣∣∣∣≪

∣∣∣∣∣
K∑
k=1

δukt
∂Imt
∂uk

∣∣∣∣∣ , m ∈ {1, ...,M} ,

the second term in (7) can be omitted so that one has:

δJt ≈
K∑
k=1

∂Jt
∂uk

δukt .
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Suppose that applied perturbations have stochastic nature and δut is a random vector with
the following statistical properties:

〈
δukt

〉
= 0, k ∈ {1, ...,K} , t ≥ 0,〈

δukt δu
l
t

〉
= Bkl

t , k, l ∈ {1, ...,K} , t ≥ 0,〈
δukt δu

l
t′

〉
= 0, for any k, l ∈ {1, ...,K} and t ̸= t′, t, t′ ≥ 0,

(8)

where ⟨·⟩, as before, denotes statistical averaging under ensemble of realizations, the diagonal
correlation matrix Bt = diag

k=1,...,K

{(
σk
t

)2} has the size K ×K and σk
t > 0, k ∈ {1, ...,K}

are standard deviations which will be specified below. Then, taking into account (8), one has
for l ∈ {1, ...,K}:

〈
δJtδu

l
t

〉
≈

〈
K∑
k=1

∂Jt
∂uk

δukt δu
l
t

〉
=

∂Jt
∂ul

〈(
δult

)2〉
=

∂Jt
∂ul

(
σl
t

)2
.

Changing in the last formula statistical averaging ⟨·⟩ by averaging over time and taking into
account aforementioned assumption about contribution of control and environmental factors
one can rewrite the iteration process (6) in the form:

ukt+1 = ukt +
γt

σk
t

δJtδu
k
t , k ∈ {1, ...,K} . (9)

The formula (9) represents canonical SPGD optimization (maximization) algorithm which
implementation will be discussed in details in Section 3.1.

The SPGD control algorithm provides appropriate optimization for a wide range of fiber-
array configurations, performance metrics and atmospheric conditions. The computation of
metric gradient estimation by SPGD algorithm is simple and can be performed extremely
fast so that novel SPGD controllers can achieve the performance up to 5 × 105 iterations
per second. All these facts motivate us try to adapt SPGD gradient estimation not solely for
metric optimization but for DNN training purposes too.

2.4 Basic Principles of Active AI control

From the consideration above it is clear that SPGD controller uses “blind” optimization
principle when metric maximization is performed using solely metric perturbations and any
additional and potentially useful information for solving the optimization problem is ignored.
In opposite to this approach an AI controller have to be designed in such a way that it could
collect and analyze all available information about physical process in order to synthesize
optimal control potentially faster and more robust than SPGD.
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Recall that in our considerations this additional information is represented via the vector
It = It (ρ;u) of observed physical characteristics as well as their historical values. Hence,
in order to account this information for the synthesis of optimal control the vector ut now
should be represented as a function dependent on instantaneous and retrospective values of
Iτ and Jτ taken for the time τ ≤ t and uτ taken for τ < t. On the other hand, in order to
make the controller capable for learning, i.e. capable for analyzing and correct utilizing the
incoming information one has to include into this functional dependence a set of trainable
parameters for their adjusting during controller operation. So, AI controller should have the
form:

ut = U (Iτ≤t,uτ<t, Jτ≤t;α) ,

where Ut (α) = U (Iτ≤t,uτ<t, Jτ≤t;α) =
{
Uk (Iτ≤t,uτ<t, Jτ≤t;α)

}K
k=1

, is some un-
known vector function andα = (α1, ..., αP ), P ≥ 1 is the vector of optimization (trainable)
parameters. For the future considerations denote Uk

t = Uk
t (α) = Uk (Iτ≤t,uτ<t, Jτ≤t;α).

Then, the optimization problem (5) can be rewritten as:

Jt = Jt (α) = J (It (ρ;Ut (α))) ,

Jt (α) → max
α

.
(10)

As before, the gradient descent optimization algorithm immediately gives us the following
iteration process for the parameters α:

αp
t+1 = αp

t + γt

K∑
k=1

∂Jt
∂uk

∂Uk
t

∂αp
dαp, p ∈ {1, ..., P} ,

where γt = γ (Jt, t) is the gain coefficient and {dαp}Pp=1 are positive scaling factors. The
estimation of gradients

{
∂Jt/∂u

k
}K
k=1

in the last formula can be performed as before using
random perturbations. Then:

αp
t+1 = αp

t + γtδJt

K∑
k=1

δukt
σk
t

∂Uk
t

∂αp
dαp, p ∈ {1, ..., P} . (11)

In the most frequently used case one has σk
t = σt for any k ∈ {1, ...,K} and dαp = dα for

any p ∈ {1, ..., P} so that the formula (11) can be rewritten as:

αp
t+1 = αp

t +
ct
σt

δJt

K∑
k=1

δukt
∂Uk

t

∂αp
, p ∈ {1, ..., P} ,

where ct = dαγt is, so-called, learning rate.
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Now suppose that U (Iτ≤t,uτ≤t, Jτ<t;α) is taken in the form of DNN with trainable pa-
rameters α. In this case formula (11) factually represents the analogue of well-known back-
propagation algorithm for training of DNN where instead of metric gradient its estimation
via random perturbations is taken. The DNN gradients

{
∂Uk

t /∂α
p
}K,P

k=1,p=1
can be computed

directly using any symbolic derivative framework for neural networks (f.e., Tensorflow [31]).

Formula (11) represents the training rule for DNN Ut (α) and at the same time provides
SPGD-type optimization of the performance metric Jt (α). In the next sections we will give
important implementation details of DNN training using formula (11) as well as conduct
numerical analysis of the proposed training mechanism.

3. IMPLEMENTATION DETAILS

Application of the proposed above methodology to power beaming problem requires speci-
fying of the mathematical formulations. For a future considerations let us suppose that the
vector It of target-plane field characteristics consists of only target-plane intensity distribu-
tion so thatM = 1 and It = It (ρ;u) = {I (ρ, z = L, t)}. In addition, we will suppose that
the metric values are normalized to the unity interval so that Jt ∈ [0, 1].

3.1 The SPGD Controller

Practical implementation of SPGD algorithm based on formula (9) shows that choosing
of appropriate perturbation strength (variances σk

t , k ∈ {1, ...,K}) and gain coefficient
γt are extremely important for the algorithm convergence. The perturbation strength is
typically chosen so that the relation δJt ∼ 0.01 (1− Jt) for metric disturbance is held.
This relation can be usually achieved using the following parametric representation for per-
turbation deviation σk

t = akσ(1− Jt)
µ + bkσ, k ∈ {1, ...,K}, where akσ ≥ 0, bkσ ≥ 0 and

µ ≥ 0 some parameters to adjust. The gain coefficient is commonly taken in the form
γkt = akγ (1− Jt)+ bkγ , k ∈ {1, ...,K}, where akγ , bkγ ≥ 0 are also parameters for adjustment.
In the most frequently used case one has σk

t = σt, γkt = γt for all k ∈ {1, ...,K} and the
SPGD algorithm can be formulated as follows:

(0) Initialization: t = 0, u0 = 0;

(1) Either measure Jt = J (It) or measure It = I (ρ, t;ut) and compute Jt;

(2) Draw random, uniformly distributed, zero-centered, vector δut with uncorrelated components
having variance σt each;

(3) Either measure Jt+1/2 = J
(
It+1/2

)
or measure It+1/2 = I (ρ, t+ 1/2; ut + δut) and com-

pute Jt+1/2;

(4) Compute metric increment δJt = Jt+1/2 − Jt and γt = aγ (1− Jt) + bγ ;

(5) Update control parameters ut+1 = ut + γtδJtδut.
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Figure 3: The schematic representation of SPGD controller operational scenario.

This is conventional two-step (see explanations below) SPGD algorithm where, in order to
decouple perturbation and gain factors, the multiplicative term (σt)

−1 in the formula (9) is
added to the gain coefficient. The operational scenario of SPGD controller is schematically
shown in the FIGURE 3.

3.2 The AI Controller - DNN Topology

As it is usual for machine learning applications, design of AI controller begins from the
specification of DNN topology that will represent the vector parametric function Ut (α).
Recall that AI controller for the power beaming problem will be continuously provided
by measurements from PVA panel having the form of two-dimensional greyscale square
image map It = I (ρ, t;ut). Supposing that this intensity distribution may contain some
information useful for generation of optimal control the input DNN layers should be capable
to extract this information from the image. It is well-known that the basic network structure
which can provide such kind of analysis is convolutional neural network (CNN) [24]. The
CNN can be interpreted as a set of trainable digital filters dedicated to extract features from
the incoming images and structurally consists of several convolution and downsampling (or
pooling) layers. As far as we deal with time-dependent image flow It the feature vector out-
coming from the CNNwill also keep dependency over time so that for the next and core DNN
structure it is reasonable to take recurrent neural network (RNN) [25], especially designed
for temporal data processing. The recurrent layers allow to include into analysis short- and
long-term temporal relations in incoming data as well as synthesize complex and temporally
correlated high-order feature vector. The conversion of feature vector outcoming from the
RNN into controls is traditionally performed using several time-distributed fully-connected
layers providing final analysis occurring in high-order feature space. In accordance from this
design for DNN of AI controller one can propose the following topology represented in the
FIGURE 4.
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The DNN in the FIGURE 4 has an input having the form of 4-dimensional matrix (also
called as tensor in machine learning applications) of the shape (1, Nws, Nx, Ny), where the
first, so-called, batch dimension equals to 1 due to controller’s operation in real-time regime,
Nws ≥ 1 is the time dimension, especially introduced for efficient training of recurrent layers,
and the last two feature dimensions equal to the image size (Nx, Ny). Later on, the DNN
input is directed into CNN having three sequentially placed time-distributed convolutional
and max-pooling layers. The CNN output, in turn, is converted into time-distributed flat
feature vector. This vector is supplemented with metric value Jt and DNN control outputs
at the previous time step ut−1 and, after that, is directed into stateful gated recurrent unit
(GRU) [26], containing 10K recurrent neurons. The GRU output is fully connected to two
sequentially placed time-distributed dense (perceptron) layers with “tanh”-type activation
function and 6K neurons for the internal layers and “linear” activation function and K
neurons for the third dense output layer. It is easy to see that DNN output will have ap-
propriate shape (1, Nws,K) for generation ofK-dimensional control vector. Note that DNN
of such particular architecture for K = 3 · 19 = 57 (fiber array with Nsa = 19 subapertures
and piston/tip-tilts control) and Nx = Ny = 256 (PVA with 256 × 256 resolution) has
approximately P ∼ 6× 104 trainable parameters α.

3.3 The AI controller – Training and inference

After choosing of DNN topology for the AI controller it is necessary to specify its training
and inference algorithm. Here we present two variants of this algorithm differ from each
other by SPGD approximation of metric gradient – first algorithm (two-step algorithm) uses
conventional perturbation strategy as well as the second one fuses perturbations with control
trajectory (one-step algorithm).

The two-step algorithm for inference and training of the AI controller can be formulated as
follows:

(0) Initialize t = 0, u0 = 0 and DNN trainable parameters α0;

(1) Measure It = I (ρ, t;ut) and compute Jt = J (It);

(2) Training phase (optional):

743



https://www.oajaiml.com/ | March 2023 A.M. Vorontsov and G.A. Filimonov

(2.1) Draw random, uniformly distributed, zero-centered, vector δut with uncorrelated com-
ponents having variance σt each;

(2.2) Measure It+1/2 = I (ρ, t+ 1/2; ut + δut) and compute Jt+1/2 = J
(
It+1/2

)
;

(2.3) Compute metric increment δJt = Jt+1/2 − Jt and γt = aγ (1− Jt) + bγ ;
(2.4) Update trainable parameters:

αp
t+1 = αp

t +
γt
aσ

δJt

K∑
k=1

δukt
∂Uk (It,ut, Jt;αt)

∂αp
, p ∈ {1, ..., P} ; (12)

(3) Inference: compute ut+1 = U (It,ut, Jt; α̃t+1), where α̃t+1 = αt+1 if training step was
performed or α̃t+1 = αt if not.

The corresponding one-step algorithm can be written as:

(0) Initialize t = 0, u0 = 0, I0 = 0, J0 = 0 and trainable parameters α0;

(1) Inference: compute ut+1 = U (It,ut, Jt;αt);

(2) Training phase (optional): draw random, uniformly distributed, zero-centered, vector δut+1

with uncorrelated components having variance σt+1 each;

(3) Set wt+1 = ut+1 + δũt+1, where δũt+1 = δut+1 if training phase is turned on or δũt+1 = 0
if not.

(4) Measure It+1 = I (ρ, t+ 1;wt+1) and compute Jt+1 = J (It+1);

(5) Training phase (optional):

(5.1) Compute metric increment δJt = Jt+1 − Jt and γt+1 = aγ (1− Jt+1) + bγ ;
(5.2) Update trainable parameters:

αp
t+1 = αp

t +
γt+1

aσ
δJt

K∑
k=1

(
wk
t+1 − ukt

) ∂Uk (It+1,wt+1, Jt+1;αt)

∂αp
, p ∈ {1, ..., P} .

(13)

Here, as in section 3.1, we made several simplifications with coefficients and gains.

It is clear that one-step algorithm supposes to pass controls through the media just once in
opposite to two-step version where it should be done twice per iteration. Implementation
shows that in rapidly changing media this advantage can be avoid by instability of one-step
iteration process and corresponding control trajectories.

The proposed algorithms structurally combine two regimes: DNN inference for synthesizing
optimal control as well as DNN weights updating for training. If the controller operates
in pure inference mode, when DNN weights updating is off, the controller uses previously
collected knowledge to control the system. In training mode control synthesis as before
is provided via DNN inference however DNN weights updating mechanism additionally
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Figure 5: The schematic representation of AI controller operating in training mode.

provides SPGD-type optimization occurring now in training parameters α space instead
of initial control parameters u space as in conventional SPGD algorithm. As we will see
below this combination of optimization and training in one process leads to a quite interesting
numerical effects.

Utilizing of RNN layers in DNN topology as well as providing stability of training process
require to have two replicas of DNN (represented as computational graphs) sharing one set of
trainable parameters: one copy for inference mode, where the optimal control is synthesized,
with Nws = 1 and another copy for training mode withNws ≥ 1. Note that, in case Nws > 1
weights updating increment in formulas (12) and (13) should be slightly modified by adding
extra summation over sequential Nws time steps. Updating of the training parameters αt in
both algorithms can be occurred by any reasonable strategy (periodically, by achieving some
metric value and so on) and supposes to use a buffer of the size Nws containing all DNN
inputs as well as estimations of metric gradient with the corresponding perturbations.

The detailed illustration of AI controller operational scenario is given in the FIGURE 5.

3.4 Combined SPGD and AI Control

In the consideration above it was implicitly supposed that the controller has all necessary in-
formation for synthesis of correct control in any time. However, real-world physical systems,
as a rule, operate in conditions when information available for the analysis is not full and the
control based on this information can be non-unique. In addition, realistic systems usually
operate in presence of stochastic and unpredictable factors that can not be accounted using
deterministic control generators. In this case the proposed approach has to be supplemented
by adding somemechanism that can compensate such unpredictable stochastic factors as well
as the lack in input information.
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Consider slightly modified formula for the control in the form:

ut = w+ Ut (α,w) ,

where w =
(
w1, ..., wK

)
is the part of the control responsible for compensation of afore-

mentioned factors. Then, the optimization problem (10) can be rewritten as:

Jt (w,α) = J (It (ρ;w+ Ut (α,w))) ,
Jt (w,α) → max

α,w
.

Under condition of uniform boundedness ofDNNderivative overw variables, i.e.
∣∣∂Uk/∂wl

∣∣ ≤
C, for some constant C > 0 and any k, l ∈ {1, ...,K}, the optimal control trajectory can be
approximated as:

wt+1 = wt +
γt
σt

δJtδut,

vt+1 = U (It, vt,wt+1, Jt;αt) ,

ut+1 = wt+1 + vt+1,

so that we factually have combination of DNN-based and SPGD control. The corresponding
training and inference algorithm in this case can be written as:

(0) Initialize t = 0, w0 = 0, v0 = 0 and DNN trainable parameters α0;

(1) Calculate ut = wt + vt;

(2) Draw random, uniformly distributed, zero-centered, vector δut with uncorrelated components
having variance σt each;

(3) Measure It+1/2 = I (ρ, t+ 1/2; ut + δut) and compute Jt+1/2 = J
(
It+1/2

)
;

(4) Compute metric increment δJt = Jt+1/2 − Jt and γt = aγ (1− Jt) + bγ ;

(5) SPGD optimization: calculate

wt+1 = wt +
γt
σt

δJtδut;

(6) Training phase(optional): update trainable parameters

αp
t+1 = αp

t +
γt
aσ

δJt

K∑
k=1

δukt
∂Uk (It, vt,wt+1, Jt;αt)

∂αp
, p ∈ {1, ..., P} ;

(7) Inference: compute vt+1 = U (It, vt,wt+1, Jt; α̃t+1), where α̃t+1 = αt+1 if training step
was performed or α̃t+1 = αt if not.

Note that, in general case SPGD- and DNN-based controls can be multiplied by some gains
in order to effectively balance a contribution of each mechanisms in optimization.
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3.5 Regularization

It is well-known that control systems operated in accordance with active feedback control
scheme have a tendency to forming of positive feedback loops that leads to significant in-
stability in its operation and training. The AI controller is not an exception to this rule and
weights updating mechanism represented above does not guarantee an absence of positive
feedbacks in control. The traditional solution avoiding this problem is utilizing of regularized
optimization metrics as well as smoothing of metric gradients. In order to realize these ideas,
at first, let us consider two functionals. First functional is designed to bound deviations in
output control trajectories during training process and has the form:

St (α) = γS
K∑
k=1

(
dUk

t (α)

dt

)2

, (14)

where γS ≥ 0 is the gain (typically, γS ∼ 10−2). Note that in (14) exactly the full derivative
of functionsUk

t (α), k ∈ {1, ...,K} over time is placed in order to avoid instability originated
not only from high-order oscillations of controller’s output but from metric and DNN input
jitters too.

In order to additionally smooth the output control as well as to prevent DNN from the over-
training the traditional L2 functional applying directly to DNN training weights is used:

L2 (α) = γL∥α∥2 = γL
P∑

p=1

α2
p,

where γL ≥ 0 is the gain (typically, γL ∼ 10−3).

Finally, training of DNN using formula (11) can meet convergence process instability due
to chaotic changing of random perturbations. In order to avoid these gradient oscillations
the standard momentum [27], or Adam algorithm can be applied [28]. Combining gradient
smoothing with metric regularization one can rewrite weights updating step as:

(0) Initialize t = 0, gp0 = 0;

(1) Update trainable parameters:

gpt+1 = νgpt +
∂

∂αp

(
K∑
k=1

(
γt
aσ

δJtδu
k
tU

k
t − γS

(
Uk
t − Uk

t−1

)2))
− 2γL

P∑
p=1

αp;

(2) Calculate αp
t+1 = αp

t + gpt , p ∈ {1, ..., P}.

Here ν ∈ [0, 1) is smoothing factor typically chosen as ν = 0.9. Note that the increment in
the step (1) is specially given in the form where partial derivatives over trainable weights are
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taken from the weighted sum of DNN outputs that maximally convenient for implementation
using popular machine learning frameworks.

3.6 Decoupling of Control Channels

Returning back to physical statement of the problem it is necessary to note that the configura-
tion of control parameters represented by the formula (2) provides extremely strong coupling
between control channels. This situation is connected with physics of fiber-array beamlets
propagation given by equation (1). For example, effective target-plane focusing of the fiber-

array at time t ≥ 0 needs to configure pistons and tip-tilts so that the sum
Nsa∑
n=1

Hn (ρ)φn (ρ, t)

on fiber-array aperture will approximate paraboloid function representing thin lens. The same
principle is fulfilled and for the control of focal spot displacement – in this case one need to
approximate the sum of paraboloid and linear function.

It is well-known that robust synthesis of control for a system with coupled channels is much
more complicated problem in comparisonwith control of the same system but with decoupled
channels. As it was noted before modern SPDG controller provides extremely high iteration
rate and mentioned problem is not quite actual. However, for AI control this problem can
be actual especially taking into account that here the optimization process is performed in
Nws times less often regarding to SPGD. To avoid this drawback let us partially decouple
fiber-array control channels introducing following decomposition of control parameters.

At pupil-plane z = 0 consider fiber-array aperture (see FIGURE 2, left) and let {Zq (ρ)}Qq=1
be the family of mutually-orthogonal and mean-square normalized Zernike polynomials on
the aperture disc, where Q = (NZ + 1) (NZ + 2) /2− 1 and NZ ≥ 1 is maximal degree of
polynomials in this set [29]. It is well-known that first five Zernike polynomials (NZ = 2)
represent fundamental optical aberrations including x- and y- slopes and defocus and hence
can be considered as a basis for reducing complexity of the light-spot control. Extending this
assumption to the polynomials of degree more than 2 let us build the transformation between
coefficients in Zernike polynomials space and fiber piston/tip-tilt basis. For q ∈ {1, ..., Q}
define:

rkq =
4

πd2


∫
Hk (ρ)Zq (ρ) d

2ρ, k ∈ {1, ..., Nsa} ,∫
(x− xk−Nsa)Hk−Nsa (ρ)Zq (ρ) d

2ρ, k ∈ {Nsa + 1, ..., 2Nsa} ,∫
(y − yk−2Nsa)Hk−2Nsa (ρ)Zq (ρ) d

2ρ, k ∈ {2Nsa + 1, ..., 3Nsa} .

Then, the matrix R = [rkq]
K,Q
k=1,q=1 of the size K × Q provides transformation between

Zernike control coefficients and conventional piston/tip-tilt representation so that u = uZR,
where uZ is Q-dimensional control vector in Zernike space.

Note that, for any particular configuration of fiber-array subapertures the matrix R is com-
puted once, each transformation from Zernike representation to fiber-array controls is re-
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quired just one matrix multiplication by a vector and can be performed extremely fast even
comparing with SPGD iteration speed.

4. NUMERICAL RESULTS

4.1 Numerical Verification of AI Controller’s Training Capabilities

In order to verify training and optimization capabilities of the proposed AI-based control
approach let us consider simple tracking system. LetM = 1,K = 2 and

It
(
x, y;u1, u2

)
= e−[(x−x(t)+u1)2+(y−y(t)+u2)2]/β2

1 , (15)

where ρ (t) = (x (t) , y (t)) is some predefined trajectory in Oxy coordinates and β1 > 0.
From the formula (15) it is clear that “intensity” distribution simulated by the formula (15) un-
der controlut =

(
u1(t), u2(t)

)
will represent a small spot located at the point

(
x(t)− u1(t), y(t)− u2(t)

)
for any t ≥ 0. Let ρ (t) = (sin (ωt) , cos (ωt)) with some ω > 0 so that circular motion of
the spot is simulated.

As an tracking objective consider the problem of “catching and holding” of the spot at the
coordinates origin. In this case for the performance metric one can take:

J
(
It
(
x, y;u1, u2

))
=

1

π

(
1

β2
1

+
1

β2
2

)∫
It
(
x, y;u1, u2

)
e−(x2+y2)/β2

2dxdy, (16)

where β2 > 0 defines the metric tolerance to the spot position. It is easy to see that metric
(16) stimulates to synthesize control trajectory ut maximally closed to spot trajectory ρ (t)
and, moreover, this metric is equivalent to smooth Strehl ratio introduced before. For the AI
controller consider the same DNN as has been proposed in section 3.2.

In the numerical experiments the simulation area was [−5.0, 5.0]x × [−5.0, 5.0]y and had
256x256 pixels resolution, β1 = 0.4 and β2 = 1.0, the simulation time step was 0.1 sec so
that the frequency factor ω provided 1 full rotation of the spot per approximately 5 nominal
minutes. The DNN grayscale input image had the same 256x256 pixel resolution, Nws = 4
and total number of trainable parameters for this DNN was about 4.5 × 104. The simula-
tions were performed in Python v.3.7 [30], the simulator was completely separated from the
controller which was implemented using Tensorflow v.1.14 [31], library for Python. For
inference and training of the AI controller the two-step algorithm represented in section 3.3
was used. Overall simulation and training time on ASUS ROG Zephyrus2 took about 30
seconds on 1 minute of simulation time.

The FIGURE 6 represents numerical results of AI control performance and corresponding
control trajectories for two different optimization and learning strategies. The first strategy

2 Intel Core i7-9750H 2.60GHz, 32 Gb RAM with Nvidia GeForce RTX 2080 with Max-Q Design, 8Gb VRAM.
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Figure 6: Performance metric Jt (a, c) and trajectories ut (b, d) versus time for two learning strategies in the tracking task.
Charts (a, b) represent “soft” training strategy with relatively small learning rate and perturbation strength. In opposite,
in charts (c, d) more “aggressive” strategy is chosen in order to rapidly achieve metric maximum.

(FIGURE 6, a–b) supposes to make relatively slow motions in the spot’s direction with
relatively small learning rate and perturbation strength. In opposite to this scenario the
second strategy (FIGURE 6, c–d) has the aim of maximally rapid “catching” of the spot
and accompany it in its motion. It is easy to see that just the first strategy allows controller
to learn the tracking principle and hence allows it to operate without SPGD-type iterations.
The second strategy failed teaching the controller so that turning off the SPGD iterations
immediately led to loosing of the spot. Moreover, continuing using the controller in such
aggressive regime without significant regularization rapidly fell the controller to instability
with generation of “saw”-type control.

Note that the same results were achieved using Gaussian randomly drawn two-parametric
process ρ (t) with mutually uncorrelated components3.

4.2 Numerical Results for Power Beaming Problem

Consider hexagonal fiber-array consisting of Nsa = 19 densely packed subapertures of the
diameter d = 60 mm each with distances between subapertures equals also to 60 mm (FIG-
URE 2 on the left) and Gaussian beamlet diameters a0 = 0.9d. In our analysis, we consider
horizontal propagation scenario at the distance L = 5000 m and vary the refractive-index-
structure parameter characterizing homogeneous atmospheric turbulence strength, C2

n, in the
range 5.0 × 10−16 − 1.5 × 10−15m−2/3. Simulation of atmospheric turbulence changes in
time is realized by introducing of wind transversal to the propagation direction with constant
speed w in the range 1 − 6 m/s. The Airy diameter at the target-plane is da = 40 mm for
wavelength λ = 1.064µm (k = 5.905 × 106m−1) and target-plane PVA has square shape
with the side D = 200 mm.

3 For this scenario Python code is available for testing by the request to authors.
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Figure 7: Illustration of simulation setup for fiber-array power beaming problem in presence of atmospheric turbulence.
The control of fiber-array output field can be performed either (A) SPGD control system or (B) AI controller.

The numerical simulations of atmospheric propagation of the optical wave from fiber-array to
PVA is performed through numerical integration of (1) using so-called split-operator method
[32, 33], when the impact of turbulence-induced aberrations is modeled with equidistantly
placed thin phase screens (see FIGURE7). The conventional approach [32], assumes using of
phase screens with finite size in both x and y directions. The simulation of atmospheric wind
requires continuously shifting of these screens inOxy planewith the need of their extension if
wind-induced displacement will exceed of the screen size. This extension traditionally can be
done either using periodical (in both directions) finite phase screens or utilizing phase screens
infinitely-long in one specified direction [34]. In our simulations we use both approaches
considering propagation scenariowith periodic phase screens as a reduced complexity control
task. The number of phase screens in numerical simulations is varied in the range 5-10.

The simulation square in xy-plane is centered at the origin, completely covers PVA area and
has 800 mm in both directions with corresponding numerical grid having 1024x1024 pixels
resolution. The phase screen resolution is chosen the same. The simulation time step sets to
5.0×10−5 sec so that the SPGD controller is factually operated at 2×104 iteration per second
and DNN training has 2× 104/Nws weight updates per second. The DNN input is provided
by PVA images that have 256x256 pixels resolution. The window size for the training DNN’s
replica is set to Nws = 4.

The performance metric is chosen as smooth Strehl ratio introduced in section 2.2. The
numerical integration in the formulas (3)-(4) is performed over PVA area only. The metric
smoothing factor is β = da/4.

The fiber-array is supplied by a optimization controller capable to operate with phase pistons
and tip-tilts, so that overall number of control parameters isK = 3×Nsa = 57. In addition,
we will assume that this controller is capable to convert controls from Zernike space to
piston/tip-tilt representation, i.e. compute the transformation u = uZR (see section 3.6),
and this transformation can be done with no additional time consumption. In our numerical
experiments we utilize the family of Zernike polynomials with degree NZ ≤ 4 (Q = 14
polynomials totally) including: x- and y- slopes (coefficients u1Z and u2Z , correspondingly),
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Figure 8: The chart (a) represents comparison of AI controller compensation performance with “no compensation” curve
taken for the period [0, 1600] ms. The AI controller operates in both training (during first 800 ms) and inference (during
the following 800 ms) modes, control is performed in Zernike space using dimensionless coefficients at first Q = 14
Zernike polynomials and periodical phase screens were taken for simulation of atmospheric turbulence. The charts (b)
and (c) represent trajectories for x- and y- slopes (u1

Z and u2
Z control variables) and defocus (u4

Z variable) versus time.
The images (d) and (e) represent square roots from intensity distributions taken in PVA area [−0.1, 0.1]x × [−0.1, 0.1]y
m2 at t = 1600ms for system operating with no compensation (d) and with AI controller (e). In this numerical experiment
C2

n = 1.0× 10−15, m−2/3 and wind speed w = 5 m/s.

752



https://www.oajaiml.com/ | March 2023 A.M. Vorontsov and G.A. Filimonov

oblique astigmatism (u3Z), defocus (u4Z) and vertical astigmatism (u5Z). Note that numer-
ical simulation and modeling of fiber-array optical system was performed using WONAT
software library adapted for Python 3.7 [35].

In our analysis we consider four scenarios of control system operation: (1) propagation with
no compensation, (2) compensation by SPGD algorithm (FIGURE 7, A), (3) compensation
by AI controller in training mode and (4) compensation by AI controller purely in inference
mode (FIGURE 7, B for both modes).
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Figure 9: The chart (a) represents comparison of AI controller compensation performance with “no compensation” curve
taken for the period [0, 1600] ms. Atmospheric turbulence is modeled using infinite aperiodic phase screens and control
is performed in Zernike space with Q = 14 polynomials. Training phase of AI controller continues for a first simulation
second and all remaining time controller operates in inference mode. The charts (b) and (c) represent trajectories for x-
and y-slopes (u1

Z and u2
Z control variable) and defocus (u4

Z variable) versus time. Here C2
n = 1.0× 10−15, m−2/3 and

wind speed w = 5 m/s.

In order to be assure that AI controller is configured properly and its operating is accompa-
nied by its learning, at first, consider 5 finite and periodic phase screens slowly moving by
constant wind w = 5 m/s. The total observation period is taken as 1600 ms so that phase
screens have a time to make 10 complete cycles. Overall time interval is separated into two
equal sub-intervals – for controller training and its inference with no training. The FIGURE
8 represents the results of this experiment. During first 800 ms in the training mode the
controller reaches approximately ⟨Jt⟩ = 0.8 compensation performance via active control
of Zernike coefficients including x- and y- slopes and defocus. Turning the training off after
800 ms keeps compensation approximately at the same level, however, the most important
that control variables are continuing to repeat the control patterns learned during training
period. This example demonstrates that even for such a short training time the controller was
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able to remember one of the possible optimization strategy completely rely on observation
of target-plane image distributions.

The next numerical experiment is dedicated to verify the controller’s generalization prop-
erties – can the controller learn the control strategy in conditions of aperiodic changing
of atmospheric turbulence. For this task let us consider 6 infinite aperiodic phase screens
moving by constant wind w = 6 m/s and compare compensation results of AI controller
with “no compensation” metric curve. The FIGURE 9 represents results of this experiment.
During the first simulation second the performance of AI control oscillates approximately
around the value ⟨Jt⟩ = 0.7 and a wide spread observed for both of curves can be explained
by using of infinitely-long phase screens having large turbulence outer-scale [34]. During
this period the controller is actively looking for optimal trajectories of control variables that
follows from the form of curves represented in FIGURE 9, (b) and (c) on the left of solid
vertical line. After turning the training off the overall compensation level is degraded to
⟨Jt⟩ = 0.5 however the controller proceeds active changing of phase slopes in order to place
target-plane light spot in central position. In parallel with slopes correction the controller
is tried to optimize the spot size by control of beam focusing however is doing that not so
active as before either due to sufficient focusing during training phase or poor training of
this capability. Thus, this example explicitly shows that the controller is capable to rather
prompt “understand” elementary relations between phase slope and target spot position, beam
focusing and spot size and can account these relation during synthesis of the control in
inference mode.

The comparison of AI and SPGD control performance will be done in two steps. Let the
control is performed directly using piston/tip-tilt variables. In the first experiment we will
mostly focus on AI controller learning capabilities instead of its compensation performance
and consider a “soft” training strategy with constant learning rate γt = 10−3, random per-
turbations with µ = 1 and will suppose presence of all types of regularization introduced
in section 3.5. The FIGURE 10, (a) represents performance curves for the system operating
with: no compensation, compensation by SPGD controller with 2× 104 iteration per second
and compensation by AI controller having 5 × 103 weights updates per second. During
training period of 1200 ms the SPGD and AI controllers provide approximately the same
compensation quality and corresponding metric curves partially repeat each other except
several intervals where AI controller operates better. After turning the training and SPGD
iterations off the compensation behavior is dramatically changed – the SPGD curve partially
begins to repeat “no compensation” curve whereas AI controller continues to provide the
compensation but not so effective as during training phase.

In the second experiment wewill focus on compensation performance of AI controller instead
of its learning capabilities and usemore “aggressive” training strategywith enhanced learning
rate γt = 10−2, µ = 0.5 and regularization applied toDNNoutputs only (i.e. using functional
St only, see section 3.5). As before, the control is synthesized directly using piston/tip-tilt
variables. The FIGURE 10, (b) represents numerical results for exactly the same realizations
of infinite phase screens as in FIGURE 10, (a). It is easy to see that during training the AI
control curve is now lying a little bit higher than SPGD curve and, in general, AI control has
less falls in performance in comparison with SPGD control. However, turning the training
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Figure 10: The chart (a) represents comparison of SPGD- and AI-based control system performance, where infinite
aperiodic phase screens were used and both algorithms are operated with piston and tip-tilt control. The SPGD
optimization as well as training phase of AI controller continue for a first 1200 ms and all remaining time SPGD
is turned off and AI controller operates in inference mode. The chart (b) represents analogous metric comparison
with the same phase screens realizations as in (a) but for more “aggressive” training strategy of AI controller. Here
C2

n = 1.0× 10−15, m−2/3 and wind speed w = 4 m/s.
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off leads AI controller to significantly worse compensation in comparison with compensation
in FIGURE 10, (a) that can be definitely interpreted as the worse training in this mode.

The FIGURE 11 represents graphical summary of the results obtained via averaging over
5 seconds of corresponding metric values for four compensation strategies mentioned be-
fore. The results show that AI controller of proposed topology in training mode exceeds
conventional SPGD algorithm up to approximately 5-7% and in inference mode lose SPGD
up to 10% except slow 1 m/s wind velocity where potentially not a complete training was
performed due to slow screens motion.

5. CONCLUSIONS

In this study we introduced self-learning AI controller and applied it for the power beaming
problem. The major goal of this research was to verify that controller’s DNN can be effec-
tively trained in real time operational regime using solely SPDG-type gradient estimation so
that after turning perturbations off the controller keeps a capability to synthesize appropriate
control. The numerical results show that this goal can be achieved if during training we use
“soft” optimization strategy and do not strive to come to maximal metric performance in a
minimal time. In opposite, more “aggressive” optimization leads to low or even absolutely
absence of DNN teaching. The trade off between these two optimization types is empirical
and mostly depends on choice of SPGD perturbation statistics, DNN learning rate and its
regularization parameters.

Another important factor that can be emphasized in connectionwithAI controller learning is a
specific organization of training data stream. In the current implementation training process
is performed using data portions (of the size Nws) consequently derived from simulation
engine so that DNN weights are updated on each data portion and after that this data is
removed. Here we face several problems: (1) the data represented in nearby portions are
strongly correlated that has negative effect on training speed, (2) complete removing of used
data provides adaptivity of the controller to environment changes but produces instability
in training due to factually absence of training dataset, (3) using just one training thread
(our batch size equals to 1) leads to essential extension of training process as well as more
poor training quality in comparison with multi-thread training. Technically, there is not any
obstacle to resolve all these issues however it is a point for a future research.

In addition to different features of training process it is necessary to note the regularization
role in proper controller’s functioning. As was mentioned before, applying regularization
to DNN outputs as well as smoothing of SPGD gradient allow to prevent such undesirable
factor as forming of positive feedback which is typically expressed as generation of shock-
type control. On the other hand, excessive regularization leads to non-plasticity in control
as well as worsening of DNN training so that here we also have to keep a reasonable trade
off. Decoupling of control channels can be also noted as important factor for the controller
training and regularization but it is not a surprise due to validity of this observation for a wide
class of control systems.
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Figure 11: Comparison results of SPGD- and AI-based control performance for different atmospheric conditions. Both
SPGD and AI controllers operate with piston/tip-tilt control variables, overall simulation time for averaging the results is
5 sec.

Returning back to power beaming with AI control it is necessary to highlight that DNN’s
incoming information in the form of PVA sensor data in principle does not contain all re-
quired information for synthesis optimal and unique phase pistons and tip-tilts. The lack of
this information can be filled or passing additional sensor data to DNN input or including
constantly working optimization mechanism like SPGD or DNN weights updating. In the
last case the question how long DNN control will be stable during such a continuous training
is still open.

In conclusion note that the proposed concept of active AI control potentially can be extended
to a wide class of physical systems where SPGD provides appropriate estimation of metric
gradient. Presence of metric singular points over control variables or in systems with strong
inertia over control this approach should be corrected in the part of proper metric gradient
estimation. However, in presence of boundary conditions and other strict limitations in
control space and in systems where optimization process requires complicated predictive
policy this approach, apparently, is not so effective and Q-function approach is preferable.
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