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Abstract
Quantum Support Vector Machines (QSVM) play a vital role in using quantum resources
for supervised machine learning tasks, such as classification. However, current methods
are strongly limited in terms of scalability on Noisy Intermediate Scale Quantum (NISQ)
devices. In this work, we propose a novel approach called the Variational Quantum Linear
Solver (VQLS) enhanced QSVM. This is built upon our idea of utilizing the variational
quantum linear solver to solve system of linear equations of a Least Squares-SVM on a NISQ
device. The implementation of our approach is evaluated by an extensive series of numerical
experiments with the Iris dataset, which consists of three distinct iris plant species. Based
on this, we explore the effectiveness of our algorithm by constructing a classifier capable
of classification in a feature space ranging from one to seven dimensions. Furthermore, we
exploit both classical and quantum computing for various subroutines of our algorithm, and
effectivelymitigate challenges associated with the implementation. These include significant
improvement in the trainability of the variational ansatz and notable reductions in run-time
for cost calculations. Based on the numerical experiments, our approach exhibits the capa-
bility of identifying a separating hyperplane in an 8-dimensional feature space. Moreover, it
consistently demonstrated strong performance across various instances with the same dataset.
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1. INTRODUCTION

Support vector machines (SVMs) are one of the most renowned and widely used machine learning
algorithms due to its ability to handle high dimensional data. It was initially formulated as a
quadratic programming problem [1]. The primary task of an SVM is to construct a separating
hyperplane that classifies data in the feature space. While SVMs are effective for many tasks,
they might not be as scalable as some other methods, such as the least square formulation of SVM
(LS-SVM), especially for large datasets [2]. The LS-SVM is a reformulation of SVM as a linear
programming problem which is equivalent to solving a system of linear equations (SLEs), making
it computationally less complex [3].

Rebentrost et al. proposed a quantum version of LS-SVM, known as the QSVM [4]. This method
successfully computes the inverse of the feature matrix by leveraging the principles of the HHL
algorithm, coming from Harrow, Hassidim, and Lloyd (HHL) [5]. HHL is designed to efficiently
solve SLEs and its computational complexity scales logarithmically with respect to the system size.
However, the implementation of the HHL poses significant challenges when it comes to the efficient
execution on the current Noisy Intermediate Scale Quantum (NISQ) devices. This is primarily due
to the extensive demand of quantum resources. Additionally, QSVM [4], requires that the training
data is prepared as a coherent superposition and provided as an imput to the quantum hardware
for computing the inverse of the kernel matrix, thus making it a plausible algorithm only when
implemented on a fault tolerant, large scale quantum computer.

Thus, quantum classical hybrid algorithms were developed that are capable of efficiently solving a
task partially on a NISQ computer. Variational hybrid quantum-classical algorithms (VHQCAs) are
a class of such hybrid algorithms, where classical pre- and post-processing methods are combined
with quantum subroutines. They have been used to solve a variety of physical problems varying
from quantum chemistry to quantummachine learning [6, 7]. The idea of VHQCAs is to use shallow
quantum circuits for quantum subroutines combined with classical post processing or optimization
techniques. In 2019, Havlıček et al. proposed a variational approach, where the authors estimated
the kernel function on a quantum computer and subsequently optimized a classical SVM on the
classical computer [8]. However, this approach was assessed using a small toy dataset with just two
features. Similar ideas were explored applying different classical optimization procedures based on
gradient descent [9], and regularized Newton method [10]. QSVM has been realized experimentally
on quantum hardware limited to two features [11]. Hence, this leaves an unexplored research area
regarding the performance and practical scalability of QSVM when applied to larger-scale, real-
world problems on NISQ hardware. This motivates our investigation presented henceforth.

We propose a novel approach within the realm of QSVM, the Variational Quantum Linear Solver
enhanced QSVM (VQLS-enhanced QSVM). A pictorial representation of our algorithm is pre-
sented in FIGURE 1. The idea of VQLS was proposed by Bravo-Prieto et al. [12], as a hybrid
quantum classical algorithm, designed to solve SLEs with a polylogarithmic scaling in problem
size. VQLS has proven to be effectively scalable on NISQ devices for large problem sizes given
a well conditioned, sparse matrix. However, to the best of our knowledge, the effectiveness of
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Figure 1: Pictorial representation of VQLS enhanced QSVM.

VQLS for solving SLEs with dense matrices derived from real-world datasets has not yet been
investigated. To this end, we develop a classifier from VQLS-enhanced QSVM. We then evaluate
the performance, by conducting an extensive series of numerical experiment using the Iris dataset
[13]. These experiments were executed on IBM-Q simulators [14], in the noise-free environment.
We analyze the numerical results of our experiments and present strategies to mitigate the hurdles of
utilizing VQLS-based QSVM for real-world applications. Based on the numerical analysis of our
experiments, our VQLS-enhanced QSVM succeeded in identifying optimal hyperplane parameters
within an 8-dimensional feature space. This is further supported by the construction of support
vector classifier (SVC) and the subsequent evaluation of its classification accuracy.

The paper is structured as follows: In Sec. 2, we briefly discuss the theory of SVMs and VQLS. In
Sec. 3, we present our approach of combining the two ideas. Sec. 4 presents results and discussion,
and finally conclusions are in Sec. 5.

2. THEORETICAL PRELIMINARIES

2.1 Support Vector Machines

SVMs have long been a cornerstone of classical supervised machine learning, serving as a powerful
tool for data classification in feature spaces [1]. An SVM constructs a separating hyperplane that
classifies data, illustrated in FIGURE 1. An SVM is a quadratic programming problem and the
least squares formulation in [3], proposes a method to obtain parameters via solving an SLE. In
this section, we discuss briefly the least squares formulation of SVMs (LS-SVM). Given the tuple
{𝑦𝑘 , ®𝑥𝑘}𝑁𝑘=1 as the training set of 𝑁 data points, the weights are given by ®𝑤 and the offset by 𝑑.
The function 𝜑(◦) is a map from the input vector space spanned by the training data to a higher
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dimensional space where classification is possible. Solving an SVM and finding the parameters for
constructing the optimal hyperplane can be reformulated as an optimization problem with variables
𝜂𝑘 [3], in the following way:

min
®𝑤,𝜂𝑘

𝒥( ®𝑤, 𝜂𝑘) =
1
2
®𝑤𝑇 ®𝑤 + 𝑐

𝑁∑
𝑘=1

𝜂𝑘 . (1)

In which case, the separating hyperplane takes the form:

𝑦𝑘 [ ®𝑤𝑇𝜑(®𝑥𝑘) + 𝑑] ≥ 1 − 𝜂𝑘 ,
𝜂𝑘 ≥ 0, 𝑘 = 1, . . . , 𝑁.

(2)

In [3], the least squares version is introduced as

min
®𝑤,𝑑, ®𝑒

ℐ( ®𝑤, 𝑑, ®𝑒) = 1
2
®𝑤𝑇 ®𝑤 + 𝛾

𝑁∑
𝑘=1

𝑒2
𝑘 , (3)

where 𝑒𝑘 corresponds to a set of slack variables which are inserted to get an equality sign instead
of inequality in Eq. (2). Here, the separating hyperplane takes the form:

𝑦𝑘 [ ®𝑤𝑇𝜑(®𝑥𝑘) + 𝑑] = 1 − 𝑒𝑘 , 𝑘 = 1, . . . , 𝑁, (4)

where 𝛾 is a tunable hyperparameter. The optimization Lagrangian takes the form:

ℒ( ®𝑤, 𝑑, ®𝑒; ®𝜃) = ℐ( ®𝑤, 𝑑, ®𝑒) −
𝑁∑
𝑖=1

𝜃𝑖 ( ®𝑤𝑇𝜑( ®𝑥𝑖) + 𝑑 + 𝑒𝑖 − 𝑦𝑖), (5)

where ®𝜃 are the Lagrange multipliers. Optimality conditions correspond to the linear system defined
in [3]: (

0 ®1𝑇
®1 𝑋𝑇𝑋 + 𝛾−11

) (
𝑑
®𝜃

)
=

(
0
®𝑦

)
. (6)

Here ®1 = [1, . . . , 1]𝑇 is a column vector of dimension 𝑁 and 1 is the 𝑁-dimensional identity matrix
in the canonical basis. Once the hyperparameters such as 𝛾 are fixed, the LS-SVM classifier is
evaluated using the test data [3]:

𝑦(®𝑥) = ®𝑤𝑇𝜑(®𝑥) + 𝑑 =
𝑁∑
𝑖=1

𝜃𝑖𝜑(®𝑥𝑖)𝑇𝜑(®𝑥) + 𝑑. (7)

2.2 Variational Quantum Linear Solver

In this section, we summarize the essentials of the algorithm from [12], solving SLEs by a variational
approach. VQLS takes the following inputs: the state |𝑏〉, the matrix representation of 𝐴 and the set
of {𝛼𝑖} as the initial set of parameters. For state initialization, there is a unitary operator that is able
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to efficiently execute𝑈 |0〉 = |𝑏〉 as a quantum circuit [15]. And the given matrix 𝐴 is decomposed
into a linear combination of unitary matrices,

𝐴 =
𝑁∑
𝑙=0

𝑐𝑙𝐴𝑙 . (8)

It is imperative that the condition number 𝜅 of 𝐴 is finite, ‖𝐴‖ ≤ 1, and the unitary 𝐴𝑙 can be
efficiently implemented by a quantum circuit. Generally, for qubit systems, 𝐴𝑙 can be further
decomposed as a combination of Pauli strings 𝑃𝑙, where 𝑃𝑙 ∈ {1, 𝑋,𝑌 , 𝑍}⊗𝑁 .

2.2.1 Variational ansatz

The solution state |𝑥〉 is prepared by a quantum circuit as |𝑥〉 = 𝑉 (𝛼) |0〉, where 𝑉 (𝛼) is a sequence
of parameterized quantum gates for the chosen ansatz. The cost function 𝐶 (𝛼) is computed in
the same circuit to estimate the overlap between 𝐴 |𝑥〉 and |𝑏〉. A popular choice is the hardware
efficient ansatz [6], from the family of fixed layer ansatz. However, it is known to be hard to train
[16, 17]. An overview of different ansatze is presented in [18].

2.2.2 Cost functions

The global cost function is defined in [12] as:

𝐶𝑔𝑙𝑜𝑏𝑎𝑙 =
1
〈𝜓 |𝜓〉

[
〈𝑥 | 𝐴†(1 − |𝑏〉 〈𝑏 |)𝐴 |𝑥〉

]
= 1 − |〈𝑏 |𝜓〉|

2

〈𝜓 |𝜓〉 ,
(9)

where |𝜓〉 = 𝐴 |𝑥〉. Alternatively, a local cost function is proposed in [12], which is resilient to
Barren plateaus for large system sizes [17], as 𝑛 grows.

The cost functions are computed in the variational circuit by using theHadamard test or theHadamard
overlap test. In terms of minimizing the number of controlled operations, the Hadamard overlap test
is preferred at the expense of increasing the number of qubits in the quantum circuit. In this work,
the values of quantities 〈𝜓 |𝜓〉 and |〈𝑏 |𝜓〉|2 are determined by using the Hadamard test. The first
component is equivalent to computing [12]:

〈𝜓 |𝜓〉 =
∑
𝑚

∑
𝑛

𝑐∗𝑚𝑐𝑛 〈0|𝑉 (𝛼)†𝐴†𝑚𝐴𝑛𝑉 (𝛼) |0〉 (10)

Each term of the form 〈0|𝑉 (𝛼)†𝐴†𝑚𝐴𝑛𝑉 (𝛼) |0〉 inside the sum of Eq. (10) is evaluated by controlled
execution of 𝐴†𝑚 and 𝐴𝑛. The implementation of a quantum circuit for this term is presented in
FIGURE 2.

Similarly, the computation of the second component is given by [12],

|〈𝑏 |𝜓〉|2 =
∑
𝑚

∑
𝑛

𝑐∗𝑚𝑐𝑛 〈0|𝑈†𝐴𝑛𝑉 (𝛼) |0〉 〈0|𝑉 (𝛼)†𝐴†𝑚𝑈 |0〉 (11)
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Figure 2: Quantum circuit for the computation of 〈𝜓 |𝜓〉. The circuit consists of the variational
block and is followed by the controlled components.

Here, the implementation of two inner products 〈0|𝑈†𝐴𝑛𝑉 (𝛼) |0〉 and 〈0|𝑉 (𝛼)†𝐴†𝑚𝑈 |0〉 inside the
sum requires two more controlled operations of𝑈, 𝑉 (𝛼) with 𝐴𝑛 and 𝐴†𝑚. FIGURE 3 illustrates the
implementation of the term 〈0|𝑉 (𝛼)†𝐴†𝑚𝑈 |0〉.

Figure 3: Quantum circuit for the computation of 〈0|𝑉 (𝛼)†𝐴†𝑚𝑈 |0〉. The additional auxiliary qubit
is present to facilitate the execution of the CCZ gate.

2.2.3 Classical optimization

To obtain an optimal set of parameters {𝛼𝑜𝑝𝑡
𝑖 }, a classical optimizer is necessary. In [12], gradient

based optimization is used. In this work, we use gradient free optimizer, specifically, cobyla [19].
A comparison between different optimization methods for hybrid quantum classical variational
algorithms is presented in [20, 21].

3. ALGORITHM

We take advantage of VQLS to solve Eq. (6), extract parameters {𝛼𝑜𝑝𝑡
𝑖 } to estimate the solution state

|𝑥〉, and construct a separating hyperplane. This hyperplane is further used for the classification of
the samples in test dataset. A pictorial representation of our algorithm is presented in FIGURE 1.
Further specifications about the execution are discussed in this section. Additionally, the pseudo-
code for our novel VQLS-enhanced QSVM algorithm is presented in Algorithm 1 and 2.
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Algorithm 1 VQLS enhanced QSVM
Input: Feature samples 𝑋𝑡𝑟𝑎𝑖𝑛 = {®𝑥1, · · · , ®𝑥𝑁 } and feature labels ®𝑦𝑡𝑟𝑎𝑖𝑛 = {𝑦1, · · · , 𝑦𝑁 }
Output: A set of optimal parameters 𝛼𝑜𝑝𝑡

Normalize 𝑋𝑡𝑟𝑎𝑖𝑛 to 𝑋𝑡𝑟𝑎𝑖𝑛 (Eq. (12))
Construct the kernel matrix 𝐾 (Eq. (6))

Decompose the kernel matrix 𝐾 into
𝑁∑
𝑙=0

𝑐𝑙𝐴𝑙 (Eq. (8))

Initialize iteration 𝑖 = 0, the stop criterion 𝜖 = 0.01, cost value 𝐶 = 1, the maximum number of
iterations 𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 300 and initial parameters of parameterized quantum gates 𝛼𝑖

𝑛𝑢𝑚𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 0
while 𝐶 > 𝜖 or 𝑛𝑢𝑚𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do
𝑠𝑢𝑚1 = 0
for 𝐴𝑚 in {𝐴1, 𝐴2, · · · , 𝐴𝑁 } do
for 𝐴𝑛 in {𝐴1, 𝐴2, · · · , 𝐴𝑁 } do
Construct the first quantum circuit (FIGURE 2)
Execute the circuit with 𝑠ℎ𝑜𝑡𝑠 = 10000
Measure the ancillary qubit 𝑞𝑎
Compute 𝑝𝑞𝑎 ( |0〉) − 𝑝𝑞𝑎 ( |1〉) to obtain 〈0|𝑉 (𝛼)†𝐴†𝑚𝐴𝑛𝑉 (𝛼) |0〉
𝑠𝑢𝑚1 += 𝑐∗𝑚𝑐𝑛 〈0|𝑉 (𝛼)†𝐴†𝑚𝐴𝑛𝑉 (𝛼) |0〉

end for
end for
𝑠𝑢𝑚2 = 0
for 𝐴𝑚 in {𝐴1, 𝐴2, · · · , 𝐴𝑁 } do
for 𝐴𝑛 in {𝐴1, 𝐴2, · · · , 𝐴𝑁 } do
Construct the second quantum circuit for computing the inner product of
〈0|𝑈†𝐴𝑛𝑉 (𝛼) |0〉 (FIGURE 3)
Execute the circuit with 𝑠ℎ𝑜𝑡𝑠 = 10000
Measure the ancillary qubit 𝑞𝑎
Compute 𝑝𝑞𝑎 ( |0〉) − 𝑝𝑞𝑎 ( |1〉) to obtain the value of 〈0|𝑈†𝐴𝑛𝑉 (𝛼) |0〉
Again construct the second quantum circuit for computing the inner product of
〈0|𝑉 (𝛼)†𝐴†𝑚𝑈 |0〉
Execute the circuit with 𝑠ℎ𝑜𝑡𝑠 = 10000
Measure the ancillary qubit 𝑞𝑎
Compute 𝑝𝑞𝑎 ( |0〉) − 𝑝𝑞𝑎 ( |1〉) to obtain 〈0|𝑉 (𝛼)†𝐴†𝑚𝑈 |0〉
𝑠𝑢𝑚2 += 𝑐∗𝑚𝑐𝑛 〈0|𝑈†𝐴𝑛𝑉 (𝛼) |0〉 〈0|𝑉 (𝛼)†𝐴†𝑚𝑈 |0〉

end for
end for
| 〈𝑏 |𝜓〉 |2
〈𝜓 |𝜓〉 ←

𝑠𝑢𝑚1
𝑠𝑢𝑚2

𝐶 ← 1 − | 〈𝑏 |𝜓〉 |
2

〈𝜓 |𝜓〉
𝑖 ← 𝑖 + 1
𝑛𝑢𝑚𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛← 𝑛𝑢𝑚𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1
𝛼𝑖 ← Update parameters using the optimizer cobyla

end while
return 𝛼𝑜𝑝𝑡
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3.1 Dataset

In this work, we use the Iris dataset [13], to evaluate the effectiveness and feasibility of our algo-
rithm. It contains 50 examples for each of the three distinct iris plant species, Setosa, Virginica,
and Versicolor. Each sample is composed of four distinct attributes: sepal length, sepal width, petal
length, and petal width, all quantified in centimeters. For our numerical experiments, two species,
Setosa and Virginica have been selected. From these two species, a total of seven samples have
been chosen randomly for the training dataset. Table 2 in Appendix .1 presents a concise overview
of a single instance of the utilized training dataset.

3.2 Data Preprocessing and Construction of Kernel Model

In order to prevent a particular feature from dominating the others due to its large magnitude, a data
normalization technique known as linear scaling has been applied in our work, so that they all fall
within the range of [0, 1]. It is worth highlighting that normalization significantly influences the
trainability of variational ansatz, as detailed in Appendix .2.

The normalization for a feature 𝑥 𝑗 is given by:

𝑥
𝑗
𝑛𝑜𝑟𝑚 =

𝑥 𝑗 (𝑖) − 𝑥 𝑗𝑚𝑖𝑛

𝑥
𝑗
𝑚𝑎𝑥 − 𝑥 𝑗𝑚𝑖𝑛

, (12)

where 𝑖 is the index of training samples.

The representation of the kernel matrix is formulated in Eq. (6). The dimension of the kernel matrix
𝐾 is (𝑁 + 1) × (𝑁 + 1), where 𝑁 is the number of samples in the training dataset. The presence of
an additional row and column is a consequence of the non-zero offset 𝑑. In the context of the linear
equation 𝐴®𝑥 = ®𝑏, the kernel matrix 𝐾 corresponds to the matrix 𝐴.

In designing hybrid quantum classical algorithms executed on current quantum hardware effectively,
it is important to strategically distribute different parts of our algorithm on different computing
platforms. For this reason, we use SVD prior to Pauli decomposition to reduce the number of
controlled components of the kernel matrix, subsequently reducing the hard part of the calculation
of the cost function. It is worthwhile to note that the Pauli decomposition in [12], is executed on
a classical computer as a one-time preprocessing step. Although there exists efficient methods to
simulate such decomposition on a quantum computer [22, 23], the comparison of resource overhead
has not been explored in the context of employing them for variational algorithms. To that end, we
aim to enhance the performance of VQLS by introducing SVD. This step is crucial towards the
trainability of the variational ansatz we use and the reduction in the time for training as we will
discuss in Sec. 4. Hence, we recast the problem as follows:

𝐴 |𝑥〉 = 𝑊Σ𝑉𝑇 |𝑥〉 = |𝑏〉 . (13)

The above can be reformulated as :

𝐴𝑛𝑒𝑤 |𝑥𝑛𝑒𝑤〉 = |𝑏𝑛𝑒𝑤〉 , (14)

where 𝐴𝑛𝑒𝑤 = Σ, |𝑏𝑛𝑒𝑤〉 = 𝑊𝑇 |𝑏〉. In case of the termination of the algorithm, the estimated state
is related to our solution by 𝑉𝑇 |𝑥𝑛𝑒𝑤〉 = |𝑥〉.
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Hamiltonian decomposition is a pivotal factor when it comes to variational algorithms in deter-
mining plausible effectiveness. Hence, various methods offer efficient Hamiltonian decomposition
[24, 25], particulary when the Hamiltonian exhibits the sparsity. Extending the same framework
to our kernel matrix, it is imperative to improve the sparsity by employing SVD for an efficient
quantum subroutine.

3.3 Implementation of VQLS

Building upon the basic implementation of VQLS detailed in [14], we extend its functionality to
implement our VQLS-enhanced QSVM.

3.3.1 Variational ansatz

The Ansatz 𝑉 (𝛼) in the VQLS is realized by using a hardware-efficient ansatz designed for a three-
qubit circuit, as introduced in [12]. The quantum circuit of this hardware-efficient ansatz, initialized
with random parameters, is shown in FIGURE 4.

Figure 4: Quantum circuit for hardware efficient ansatz.

3.3.2 Quantum circuit for computing the cost function

The state |𝑥〉 is prepared with the ansatz by 𝑉 (𝛼) |0〉. The value of the cost function indicates
the overlap of 𝐴 |𝑥〉 with the solution state |𝑏〉. A higher cost indicates a lower overlap between
current and desired solution. Therefore, it is crucial to determine an optimal set of the parameters
{𝛼𝑜𝑝𝑡

𝑖 } through an optimization method on a classical computer by minimizing the cost function
from Eq. (9). Details of the code to compute the cost function are explained in the pseudocode
presented in Algorithm 1.

3.3.3 Construction and validation of SVC

The set of optimal parameters {𝛼𝑜𝑝𝑡 } obtained through Algorithm 1 is delivered to initialize the
hardware-efficient ansatz, allowing us to estimate the vector ®𝜃 after measurement.
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Themeasured probabilities of each basis state in the statevector indicate the weights of ®𝑥𝑘 , where 𝑘 =
1, · · · , 𝑁 , used in constructing the SVC. Since we obtained only the normalized statevector from the
quantum subroutine, an additionalmachinery is required to estimate its actualmagnitude. Therefore,
we employ linear regression to estimate both 𝑑 and ‖ ®𝜃‖. Algorithm 2 shows the pseudocode, which
was used for construction and validation of the SVC.

Algorithm 2 SVC
Input: A set of optimal parameters {𝛼𝑜𝑝𝑡

𝑖 }
Output: The accuracy of SVC in the validation dataset
Construct the Hardware-efficient ansatz 𝑉 (𝛼) (FIGURE 4)
𝑉 (𝛼𝑜𝑝𝑡 ) ← Initialize the Ansatz with the optimal parameters {𝛼𝑜𝑝𝑡

𝑖 }
|𝑥𝑜𝑢𝑡〉 ←Measure all qubits
®𝜃′ = ®𝜃


 ®𝜃


 ← |𝑥𝑜𝑢𝑡〉, where ‖ ®𝜃‖ is unknown
®𝑤′ ←

𝑁∑
𝑖=1

𝜃′𝑖 · ®𝑥𝑖

𝑒′𝑖 ←
𝜃 ′𝑖 ·𝑦𝑖
𝛾

𝑑, ‖ ®𝜃‖ ← 𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(∀𝑖 : 𝑦𝑖 − 𝑦𝑖𝑒′𝑖 − ®𝑤′𝑇 ®𝑥𝑖 − 𝑑 = 0)
®𝜃 ← ‖®𝜃‖ · ®𝜃′
®𝑤 ← ‖®𝜃‖ · ®𝑤′
SVC:

𝑦 =

{
1 if ®𝑤𝑇 ®𝑥 + 𝑑 ≥ 0
−1 if ®𝑤𝑇 ®𝑥 + 𝑑 < 0

return 𝑦

4. RESULTS

In this section, we discuss the results of our numerical experiments, aiming to evaluate the perfor-
mance of our VQLS-enhanced QSVM algorithm. In our work, we use the three qubit VQLS model
and the size of the kernel matrix is 8 × 8.

For the VQLS subroutine, we set the termination condition for the optimization routine as follows:
either the program terminates at maximum iterations (= 300) or if the cost value is the same for the
last certain number of iterations. For this work,we use the IBM-Q aer simulator and the optimizer
cobyla for the classical optimization routine on our local computing resource1.

In Sec. 4.1, we show how employing SVD prior to Pauli decomposition and solving an equivalent
problem gives us an edge over merely using Pauli decomposition [12], in terms of convergence to a
minimum and run-time. In the rest of our analysis, we include SVD as an element in the construction
of the classifiers.

1 We use a computer with a processor Intel Xeon ES-2670. Running at system specifications of 2.60 Hz and 64 GB RAM. This system
was used for all numerical experiments.

2173



https://www.oajaiml.com/ | April 2024 Jianming YI, et al.

In Sec. 4.2 and Sec. 4.3, we use different datasets and different instances within a given dataset
to derive SLEs and explore the consequent impact on the convergence of the cost function. This
variation leads to SLEs with varying condition numbers, yielding insight into the behavior of VQLS
in these cases. In Sec. 4.3, we also analyze the accuracy of classifiers constructed using the VQLS-
enhanced QSVM, in comparison to the LS-SVM.

4.1 Impact of SVD on Run-Time and Convergence

Since VQLS shows promise in terms of scalability to larger systems in [12], it is crucial to reduce the
total number of Pauli strings in Eq. (8) for the computation of the cost function in Eq. (9) and improve
its trainability. As proposed in Sec. 3.2, we replace the kernel matrix with its SVD component Σ. By
solving the new system of equations given by Eq. (14), we accelerate the convergence and enhance
the trainability compared to the tradional method of using Pauli decomposition for the matrix 𝐴 in
the original problem in Eq. (13).

In our experiment, the number of Pauli strings after decomposition for 𝐴 and 𝐴𝑛𝑒𝑤 are 36 and 8,
respectively. Consequently, the total number of expectation values to be computed within the sum in
Eqs. (10) and (11) is reduced. For example, when the number of terms in the decomposition is given
by 𝑙, we need 𝑙2 loops at most to compute the inner product in Eq. (11). In our case, this translates to
1296 (362) and 64 (82) loops for 𝐴 and 𝐴𝑛𝑒𝑤 respectively. This reduction significantly decreases the
number of terms required to compute expectation values within Eqs. (10) and (11) and the run-time.
The combination of SVD and Pauli decomposition reduces the system run-time to approximately
one-sixteenth of what it would be used using the Pauli decomposition alone, when 〈𝜓 |𝜓〉 and
|〈𝑏 |𝜓〉|2 in Eq. (9) are computed for our specific example. FIGURE 5 illustrates the run-time for
identifying an optimal set of parameters for the construction of the separating hyperplane when
executed using only Pauli decomposition versus the combination of SVD and Pauli decomposition.

We also note that recasting the problem into Eq. (14) yields a lower minimum of the cost function,
indicating a possibly more accurate solution. FIGURE 5 also compares the final cost minima.
Notably, Bravo-Prieto et al. [12, Appendix A], discuss precision of the cost function computation
and its dependence on sparsity. Specifically, for a 𝑑-sparse matrix, the discussion presented in
[12], implies that the precision of the cost function computation is inversely proportional to 𝑑.
Consequently, improving sparsity by solving for 𝐴𝑛𝑒𝑤 instead of 𝐴 improves the precision of the
cost function calculation. For more details on the role of sparsity in solving SLEs with quantum
algorithms, we refer to [5, 25].

4.2 Influence of the Condition Number 𝜅 On the Convergence of the Cost Function in VQLS

We study the influence of parameter 𝜅 on the convergence of cost function numerically, varying the
values of 𝜅. Numerical experiments are categorized into two parts based on the chosen dataset: toy
dataset and the Iris dataset.
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Figure 5: Run-time analysis for the convergence of the cost function for the matrices 𝐴 and 𝐴𝑛𝑒𝑤 .
The cost values start to converge after around 30 min for 𝐴𝑛𝑒𝑤 compared to 450 min for
𝐴 according to the system time. Additionally, the final cost value for 𝐴𝑛𝑒𝑤 converged to
a notably lower value of 6%, in comparison to the 24% for 𝐴.

4.2.1 Results with toy dataset

In this analysis, we randomly choose three different instances of data. The Pauli decomposition of
the matrix contains two Pauli strings, III (1 ⊗ 1 ⊗ 1) and YYZ (𝑌 ⊗ 𝑌 ⊗ 𝑍). Each instance has
two different sets of coefficients. Solving each of these SLEs demonstrates a clearer understanding
of the impact of 𝜅 on the convergence of the cost function. FIGURE 6 illustrates 𝜅’s influence on
convergence in three instances.

Given the substantial impact of 𝜅 on the convergence of the cost function shown in FIGURE 6,
we further investigate the relationship between the number of Pauli strings in the decomposition
of several matrices with similar condition number and the convergence of the cost function. This
analysis involves four instances with the kernel matrix having 10, 15, 20, and 36 Pauli strings. The
condition number of all these matrices is 𝜅 ≈ 3. The convergence of the cost function is illustrated
in FIGURE 7.

For SLEs constructed with the toy dataset, VQLS is accurate when the kernel matrix is well condi-
tioned. In such a situation, the number of Pauli strings in its decomposition does not play a major
role.
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Figure 6: Condition number 𝜅’s influence on the convergence of the cost function in VQLS. It
is noteworthy that the results obtained from instances associated with low condition
numbers exhibit a better convergence in VQLS.

Figure 7: Influence of the number of Pauli strings for a given condition number on the convergence
of the cost function in VQLS.
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4.2.2 Results with the Iris dataset

In this section, we present numerical results that highlight the impact of the condition number 𝜅
on the convergence of the cost function, when utilizing the Iris dataset to evaluate our approach
without the use of SVD. We extracted one instance of training dataset, including seven samples
from Setosa and Virginica, and generated five different kernel matrices using Eq. (6). The condition
numbers of these kernel matrices are 𝜅 = 5, 10, 19, 144 and 721, which is realized by adjusting the
hyperparameter 𝛾 from Eq. (6). The results shown in FIGURE 8, align nicely with those for the toy
dataset (FIGURE 6 in Sec. 4.2.1).

Figure 8: Impact of 𝜅 on the convergence of the cost function without the SVD for the Iris dataset
.The accuracy of the solution is attributed to lower cost minimum and is better for systems
with a lower condition number in VQLS.

We observe that the use of SVD in preprocessing weakens the existing correlation between the
condition number 𝜅 of the kernel matrix and the convergence of cost function in VQLS. To evaluate
our approach’s performance when utilizing the SVD, we conducted subsequent experiments using
the same five kernel matrices used previously in the analysis presented in FIGURE 8. The numerical
results demonstrate a lower cost minimum even under a high condition number 𝜅. This can be
observed in FIGURE 9.

Theweakening of correlation between the condition number and convergence of cost function due to
inclusion of SVD is advantageous. This results in a better convergence at higher condition numbers
and a significant enhancement in the trainability of variational ansatz.
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Figure 9: Impact of the condition number 𝜅 on the convergence with SVD for the Iris dataset. It is
worth noting that VQLS demonstrates a notable convergence of cost function in the same
instance with the in FIGURE 8, even when dealing with matrices featuring a high 𝜅.

4.3 Performance Evaluation of SVC Built with Vqls-Enhanced QSVM

Figure 10: Two instances of classifier accuracy for SLEs with different 𝜅. On the left side, we
compare accuracy of two SVCs on test data, one constructed classically, another from
QVSM. It is to be noted that 100% refers to a full correct classification, and the worse
classification obtained in this analysis is 50%. On the right, we compare final cost
values.
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In this analysis, we consider ten random instances of training sets from the Iris dataset. Four of
them have 𝜅 ≤ 10, three fall within 10 < 𝜅 < 100 and three have 𝜅 ≥ 100.

The classification hyperplanes for these ten instances are constructed using the VQLS-enhanced
QSVM detailed in Sec. 3. For accuracy validation, we compare the performances of QSVM-based
and LS-SVM-based classifiers. The influence of different condition numbers of the kernel matrix,
which are manipulated through 𝛾, is evident on the classifier accuracy as seen in FIGURE 10. The
final cost values are also plotted for these matrices alongside the accuracy. Furthermore, TABLE 4,
in Appendix .4 shows the evaluation of classification performance employing a range of metrics.

Furthermore, we repeated each of our numerical experiments five times to examine the stability.
TABLE 1 displays the experimental results for one instance. Based on the table, it is evident that the
majority of the outcomes yields similar classification accuracy. Results of three more experiments
for additional instances are reported in Appendix .3. It is important to note that having a lower
cost value does not inherently guarantee higher classification accuracy. This is due to the fact that
a lower cost value does not guarantee an accurate solution in the case of VQLS [12]. Hence, it is
important to include a verification step to validate the solution.

Table 1: Analysis of the stability of SVC constructed by theVQLS-enhancedQSVM in one instance

𝜅 No. No. of incorrect
classification

accuracy of our SVC accuracy of classical
SVC

1 1 99%
2 1 99%

4.8 3 1 99% 100%4 1 99%
5 41 59%

1 1 99%
2 1 99%

287 3 1 99% 100%4 1 99%
5 46 54%

1 50 50%
2 50 50%

4594 3 50 50% 50%4 50 50%
5 48 52%

5. CONCLUSION AND OUTLOOK

This work aims to identify an optimal set of parameters for constructing a classifier on a quantum
computer. We then use this classifier to complete the classification tasks in supervised learning.
This objective is realized by utilizing our proposed hybrid quantum-classical algorithm on NISQ
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devices, named as the VQLS-enhanced QSVM. Additionally, we benchmarked this approach by
examining the SVC with real-world data, the Iris dataset.

The VQLS-enhanced QSVM is capable of robustly identifying a separating hyperplane that highly
accurately classify samples in the test data. We note that SVD is crucial for minimizing the number
of controlled unitaries applied during a Hadamard test. Hence, we applied SVD on the kernel matrix
𝐴 in our numerical experiments. It significantly reduces the number of expectation values computed
in one iteration for a faster and more accurate result. Furthermore, appropriately selecting the hyper
parameter 𝛾 in Eq. (6), utilized for the design of the kernel matrix, crucially influences both the
trainability of variational ansatze and the classification accuracy. The classifiers constructed using
our approach exhibits a strong performance for problems with small condition number of the kernel
matrix 𝐴.

This work can be further explored by employing noise models and executing numerical experiments
on real quantum hardware. It is also worthwhile to investigate the scalability of the VQLS-based
QSVM with increasing problem size.
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.1 An instance of the training dataset

In this section, in TABLE 2, we have an overview of one instance of dataset used for training.
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Table 2: Overview of one instance of the utilized training dataset.
No. Sepal Length Sepal Width Petal length Petal Width Sepal

1 5.1 3.5 1.4 0.2 Setosa
2 4.9 3.0 1.4 0.2 Setosa
3 4.7 3.2 1.3 0.2 Setosa
4 5.0 3.6 1.4 0.2 Setosa
5 6.7 3.0 5.2 2.3 Virginica
6 6.3 2.5 5.0 1.9 Virginica
7 5.9 3.0 5.1 1.8 Virginica

.2 Influence of the data normalization technique on the cost function convergence

Data normalization plays a key role in data preprocessing, particularly in machine learning and data
analysis. It encompasses the transformation of data into a standardized format or scale, thereby
enhancing its suitability for subsequent analysis or model training. The significance of data nor-
malization is introduced by our cost function convergence analysis in FIGURE 11.

.3 Numerical results for evaluating the stability with additional instances of the kernel
matrix 𝐴

The data in TABLE 3, indicates that most of the classification results are similarly precise.

.4 Numerical results for classification accuracy with additional instances of the kernel
matrix 𝐴

TABLE 4 summarizes the main classification metrics for two instances from the Iris dataset.

we present the classification accuracy for the repetitions of a specific instance in TABLE 5. This
also serves as a stability analysis for the program.

2182



https://www.oajaiml.com/ | April 2024 Jianming YI, et al.

Figure 11: Impact of three data normalization techniques on cost function convergence in VQLS.
It is worth emphasizing that gradient vanishing issues arise when input data is not
normalized. Furthermore, linear scaling plays a significant role in mitigating gradient
vanishing and facilitates faster and more reliable convergence of the cost function.
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Table 3: Analysis of the stability of SVC constructed by the VQLS-enhanced QSVM in three
additional instances

Instance 1

𝜅 No. No. of incorrect
classification

accuracy of our SVC accuracy of classical
SVC

1 1 99%
2 3 97%

17 3 1 99% 100%4 1 99%
5 37 63%

1 1 99%
2 49 51%

30 3 1 99% 100%4 1 99%
5 5 95%

1 1 99%
2 3 97%

319 3 1 99% 100%4 14 86%
5 48 52%

Instance 2

𝜅 No. No. of incorrect
classification

accuracy of our SVC accuracy of classical
SVC

1 1 99%
2 7 93%

11 3 1 99% 100%4 44 56%
5 41 59%

1 14 86%
2 50 50%

35 3 1 99% 100%4 1 99%
5 2 98%

1 2 98%
2 31 69%

14742 3 37 63% 50%4 1 99%
5 49 51%
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Table 3: Continued...
Instance 3

𝜅 No. No. of incorrect
classification

accuracy of our SVC accuracy of classical
SVC

1 50 50%
2 50 50%

8 3 46 54% 100%4 49 51%
5 49 51%

1 1 99%
2 50 50%

21 3 48 52% 100%4 1 99%
5 46 54%

1 50 50%
2 50 50%

222 3 1 99% 84%4 50 50%
5 50 50%
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Table 4: A Report showing the main classification metrics for two instances
Matrix 𝐴1

𝜅 Class Precision Recall F1-score Support

5.5 Virginica 0.98 1.00 0.99 50
Setosa 1.00 0.98 0.99 50

13 Virginica 0.91 1.00 0.95 50
Setosa 1.00 0.90 0.95 50

17 Virginica 0.91 1.00 0.95 50
Setosa 1.00 0.90 0.95 50

25 Virginica 0.74 1.00 0.85 50
Setosa 1.00 0.64 0.78 50

287 Virginica 0.00 0.00 0.00 50
Setosa 0.50 1.00 0.67 50

5696 Virginica 0.00 0.00 0.00 50
Setosa 0.50 1.00 0.67 50

Matrix 𝐴2

𝜅 Class Precision Recall F1 - score Support

4.8 Virginica 0.98 1.00 0.99 50
Setosa 1.00 0.98 0.99 50

10 Virginica 0.98 1.00 0.99 50
Setosa 1.00 0.98 0.99 50

13 Virginica 0.88 1.00 0.93 50
Setosa 1.00 0.86 0.92 50

19 Virginica 0.98 1.00 0.99 50
Setosa 1.00 0.98 0.99 50

144 Virginica 0.52 1.00 0.68 50
Setosa 1.00 0.08 0.15 50

4594 Virginica 0.00 0.00 0.00 50
Setosa 0.50 1.00 0.67 50
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Table 5: Analysis of the stability of SVC constructed by theVQLS-enhancedQSVM in one instance

Instance 𝜅 No. of incorrect
classification

accuracy of our SVC accuracy of classical
SVC

5 1 99% 100%
11 1 99% 100%

1 19 7 93% 100%
144 46 54% 100%
4594 50 50% 50%

6 2 99% 100%
13 5 94% 100%

3 25 5 50% 100%
287 18 50% 99%
5696 1 50% 50%

18 1 99% 100%
30 46 54% 100%

4 319 3 97% 50%
635 47 53% 47%
6961 1 99% 50%

5 1 99% 100%
11 6 94% 100%

5 21 50 50% 100%
138 1 99% 100%
5230 1 99% 50%

18 1 99% 100%
30 46 54% 100%

6 319 3 97% 50%
635 47 53% 47%
6961 1 99% 50%

21 50 50% 100%
50 18 82% 100%

7 76 37 63% 77%
178 1 99% 59%
8302 50 50% 50%

22 48 52% 100%
30 49 51% 100%

8 102 45 55% 61%
156 1 99% 90%
7880 50 50% 50%

26 50 50% 100%
34 1 99% 100%

9 47 1 99% 81%
544 1 99% 50%
7528 1 99% 50%
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Table 5: Continued...
Instance 𝜅 No. of incorrect

classification
accuracy of our SVC accuracy of classical

SVC

25 50 50% 100%
34 49 51% 100%

10 83 50 50% 100%
178 50 50% 100%
8936 50 50% 50%

34 49 51% 100%
39 3 97% 100%

11 65 50 50% 100%
370 1 99% 50%
8887 13 87% 50%
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