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Abstract

Mask optimization for optical lithography requires extensive processing to perform the Res-
olution Enhancement Techniques (RETs) required to transfer the design data to a working
Integrated Circuits (ICs). The processing power and computational runtime for RETs tasks
is ever increasing due to the continuous reduction of the feature size and the expansion
of the chip area. State-of-the-art research sought Machine Learning (ML) technologies to
reduce runtime and computational power, however ML-RETs are still not enabled for IC
production flows yet. In this study, we analyze the reasons holding back ML computational
lithography from being production ready. We present a novel flow that enables end-to-end
mask optimization in addition to high scalability and consistency.

Keywords: Machine learning, Convolutional Neural Networks, Optical lithography, Reso-
lution enhancement techniques, Photo-mask optimization

1. INTRODUCTION

Computational lithography aims to prepare synthesized integrated circuits (ICs) designs for accurate
transfer into the semiconductor wafer. It performs elaborate correction flows that adds, subtracts
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and modifies the original IC patterns with the end goal of minimizing the fabrication process errors.
Such correction flows and operations are often referred to as Resolution Enhancement Techniques
(RETs) and are known for being computationally expensive and time consuming.

As nanolithography technologies continue to advance towards ever decreasing minimum feature
sizes, the same die area is able to host more design data. Henceforth, the data volume required
to produce the same wafer area increase substantially, consequently, increasing the computational
power and runtime required to perform the RET correction.

Computational lithography industry sought Machine Learning (ML) algorithms to accelerate the
RET correction and reduce the computational load. However, ML-RET are not yet adopted for
production to the best knowledge of the authors.

In this study, we analyze the reasons holding back ML-RET correction from utilization in RET
production flows. Based on this analysis, we introduce a novel flow that mitigates those obstructions
and offers an end-to-end production-ready platform for ML-RET with very high scalability. The rest
of this paper is organized as follows: in section 2, we discuss the traditional way of performing RET
correction. Next, we discuss and analyze the state-of-the-art of ML-RET and the roadblocks holding
it from being a viable production option in section 3. We then introduce TPM-RET, a novel end-to-
end production friendly ML flow to model and correct lithography in section 4, and showcase some
of its results in section 5. Next, we discuss how TPM-RET flow solves the production difficulties
in section 6. Finally, we present our future plans and conclusions in sections 7 and 8 respectively.

2. TRADITIONAL RET

Optical lithography machinery provided good accuracy early-on for large pattern dimensions. How-
ever, its accuracy and fidelity degraded as manufacturing requirements progressed towards smaller
dimensions, even though such dimensions are still within the process theoretical limits. Literature
indicates [1] that the influence of Optical, mechanical and chemical effects become more impactful
as the printed features progress towards the theoretical lithography limits.

It is impractical to replace the production lines for every new lithography node, given the hefty time
and monetary investments put into research and yield stabilization. Thus, it is the duty of advanced
computational lithography and RET techniques to extend the lifespan of the existing infrastructure
with little or no modification to the hardware.

RET techniques were invented gradually one after another as the need arose and extra correction
steps were required. Such techniques are executed sequentially in standard tapeout flows that grew
more complex with every technology advancement. Furthermore, each one of these techniques
grew more complicated as the accuracy degradation grew more prominent. Here is a list of some
famous RET techniques [2, 3]:

* Optical Proximity Correction (OPC)
» Sub-Resolution Assist Features (SRAFs)
» Off-Axis Illumination (OAI)
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» Mask Process Correction (MPC)
* Phase-Shifing Masks (PSM)

In general, a RET technique operates in one of the following ways:

1. Modify the mask shape by moving its edges or introduce new features such that the results of
the mask illumination is as close as possible to original target shapes.

2. Change the laser source shape or incidence angle to enhance contrast at wafer plane or give
optimal illumination conditions to dominant mask feature configuration.

3. Alter photomask stack in order to introduce phase difference between bright and dark areas
consequently offering better contrast for the wafer image.

The ever-growing computational, complexity and cost overhead of traditional RETs drive the in-
dustry to look for a faster and less computationally demanding approaches [4]. ML-RETs offer an
attractive alternative to reduce the computational cost of the RETs, however such solutions are not
yet adopted for RET production flows.

3. ML-RET STATE-OF-THE-ART ANALYSIS

In this section, we briefly discuss the current state-of-the-art ML-RET solutions and analyze the
obstacles holding back this technology from reaching production-level despite the efforts expended.

3.1 State-of-the-Art Synopsis

Literature shows clear research directions and preferred methods for performing ML-RET correc-
tion. These directions are influenced by the nature of the RET correction itself as well as the latest
advancements in ML industry especially in the image processing field. Based on our research, we
summarize the key characteristics of the ML-RET meta as follows:

3.1.1 Image-based photomask correction

Recent state-of-the-art ML-RET methods use image-based input by converting design patterns into
image slices [5, 7-9]. The ML model then translates the input images and transfers it to the optimized
photomask domain to produce an image with the final photomask shapes.

3.1.2 Generative ML techniques

Generative Adversarial Networks (GANs) [10] and other advanced domain transfer ML techniques
are the mainstream methods for state-of-the-art ML-RET research [6, 8, 9, 11]. This can be attributed

1927



https://www.oajaiml.com/ | February 2024 Mohamed Habib, et al.

to the great advancements of image generation and translation techniques in recent years, henceforth,
encouraging their usage to solve ML-RET as a domain transfer problem.

3.1.3 Single ML-RET applications

State-of-the-Art research focuses on ML specific treatment targeting a single RET application [5,
9, 12, 13]. OPC correction and SRAF insertion are the most researched techniques in that regards,
since they are the most challenging and computationally expensive operations in the production
tapeout flow.

3.1.4 Model-based reference data

Reference data required for ML model training is usually generated using state-of-the-art model-
based RET solutions [6, 9, 12, 13]. Inverse Lithography Technology (ILT) [14] is often used to
fulfill this role as it provides the theoretical best photomask for a given pattern.

3.2 Difficulties Facing Production-Ready ML-RET
3.2.1 Loss of mask information

The final photomask after RET correction is a binary pattern, where any pixel on it can be either
bright or dark. Traditionally, the final photomask is obtained through a series of simulations and
iterative correction until reaching acceptable accuracy.

For ML-RET model training, the binary photomask data is used to teach the model about the
correction process and ideal corrected patterns. However, this means losing valuable information
about the intermediate operations and obscures a lot of the physical and process relations. This,
in turn, makes it hard for the ML-RET model to infer the correct relations governing the process
behavior. Thus, the risk of over training increases and the reduces the ML models ability to handle
never-seen patterns.

3.2.2 Full-chip scale issues

State-of-the-Art research focuses on the accuracy and runtime aspects of calibration and evaluation
of ML-RET models. To the best knowledge of the authors, not much attention goes to enabling chip
scale evaluation, which is a key aspect for enabling the technology. Since a full chip is too large to
be processed as a single image, the need arise for splitting the chip into smaller slices and stitching
them back after correction is done.

For a ML-enabled process, slicing the chip data is not a simple task especially for when using
GANSs and image translation techniques. The recurring patterns should be put consistently in the
same location with respect to its window slice to make sure the correction results are consistent.
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The reassembly of the chip from the corrected images slices is yet another nontrivial task that calls
for complex post-processing rules. First, it requires stitching back polygons spanning across mul-
tiple windows together, and consequently, resolving any conflicts that appear at window borders.
Furthermore, more post processing is required to resolve any MRC! violations that may appear if
polygons in separate windows come too close after stitching them together.

3.2.3 Correction consistency

Consistency is an important aspect for [C manufacturing to ensure similar treatment for same pat-
terns across a chip scale correction. This is especially desired for designs based on symmetrical
device topologies in order to ensure uniform device performance, reliability and minimize electrical
stress.

The topological features around the target pattern is a main factor that dictates its correction. Slight
shifts in the correction window, i.e due to chip slicing in an GAN-based correction, can lead to a
different ML-RET response to the same pattern resulting into inconsistent correction.

The stitching operations during full-chip assembly can be another source of correction inconsistency.
This happens in the cases where the post-processing algorithm applies different treatments to the
polygons near windows border while resolving stitching conflicts or MRC violations.

3.2.4 Hardware requirements

Traditional RET correction requires massive computational resources, hence FABs usually own
huge processing grids with thousands of CPU cores as well as advanced monitoring and allocation
management systems. ML models, however, are best trained and utilized in a GPU-based environ-
ment.

To adopt state-of-the-art ML-RET flows, FABs need to replace their CPU-based infrastructure and
reinvest in a GPU-based one. This creates great deal of resistance in the adoption of ML-RET due
to the accumulated experience, time and fund investments in the older infrastructure.

3.2.5 Pattern interaction distance

The physical phenomena affecting the pattern transfer from photomask to wafer depends heavily
on the interactions between neighboring patterns. Computational lithography tools usually have a
specified distance where such pattern interactions have an impactful contribution, usually referred
to as interaction distance or radius.

Traditional RET tools calculate the interaction distance uniformly around each pattern. This is also
true for ML-RET models that utilize uniformly collected features around the corrected pattern, such
as models based on Support Vector Machines (SVM), as the feature collection algorithm can be
programmed to restrict measurements to the correct interaction distance.

! Mask Rule Checks: Special rules defined by mask house to make sure the photomask is manufacturable.
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On the other hand, GANs and similar ML-RET models correct for a complete windows as whole,
thus the whole window can be considered as interacting features to any pattern inside it. This poses
two issues, first, patterns at window edges will have unsymmetrical interaction distance. The second
issue is that similar patterns will have variable interaction distance according to their position in the
window. This can lead to variability in the correction results and further contribute to inconsistency.

3.2.6 Input resolution

Traditional RET techniques as well as feature-based ML-RET, use the IC design data directly to
perform the correction or measure layout features respectively. The layout resolution in this case
determines the refinement of the edge displacement which can bring forth better accuracy.

GAN-based ML-RET models, contrarily, require the conversion of the IC layout to image to be able
to process the data. This adds an extra dimension to the correction process. Using too coarse image
resolution sabotages the accuracy of the correction due to the information loss, making the model
unable to differentiate between pattern configuration. While using too fine image resolution harms
the correction runtime as well as increases the chance of model overfitting and losing the ability to
generalize over the input samples.

3.2.7 Never-seen pattern integration

Traditionally, a never-seen pattern does not impact process modeling. If such pattern failed to post
RET verification, the RET correction recipe is then fine tuned to account for it, or in some rare
occasions, it can be entirely disallowed using design rules and hotspot detection tools.

MI-RET models, on the other hand, are built based on the model experience with patterns that are
relatively similar to real-life designs. Hence, model retraining may be necessary to account for such
patterns. RET models are the most central part of the correction process, their calibration and fine
tuning takes effort, experience and most importantly test photomasks to perfect. Therefore, having
to retrain the models to include patterns that are outside of the seen data space is a huge overhead.

3.2.8 Partitioning of RET correction

Traditionally, RET correction is done in stages in reverse order of the process manufacturing steps.
This staged approach is due to RET techniques being introduced overtime and the CAD industry
formulating the correction using such techniques as separate building blocks comprising a big flow.

This staged approach is, however, heavily influencing the correction flow in ML-RET state-of-the-
art research. The partition of the ML-RET flow adds extra multiple layers of complexity, requiring
dataset preparation, data engineering, model training and verification for every part of the correction
flow.
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4. TPM-RET: NOVEL PRODUCTION-FRIENDLY ML-RET FLOW

We present True Pixel-based Machine-learning RET (TPM-RET), a novel production-friendly flow
for the modeling and correction of the lithography process using convolutional neural network.
TPM-RET framework addresses the concerns discussed in section 3, providing a CPU-scalable,
end-to-end, consistent solution all while being full-chip ready.

In the next subsections, we discuss the design choices defining the TPM-RET flow. The main focus
of such discussions is to demonstrate the benefits of this novel flow and how it addresses the aspects
that makes ML-RET not appealing for mass-production.

4.1 Design Choice #1: True Pixel-Based Correction

Modern state-of-the-art methods use GANs to correct chunks of the photomask at one go using input
image clips of the design data. This correction style is, in fact, pixel-based, however it generates
conflicts at split boundary and consistency distrust due to correction window shifts as previously
discussed in section 3.2.3. To avoid such issues, gain more control over the correction scheme and
allow for flexible image resolution, we opt to apply correction for each pixel of the photomask
separately, one at a time.

4.2 Design Choice #2: Minimum Model Footprint

To reduce any runtime issue from the pixel-by-pixel correction, we choose to use the minimum
model that yields good accuracy. Thus, we choose Convolutional Neural Network (CNN) as the
model structure of choice for TPM-RET, due to its efficiency in image classification and low com-
putational power requirements.

4.3 Design Choice #3: Inverse Intensity Profile (IIP)

Inverse Lithography Technology [ILT] [14] solves the lithography optimization problem inversely.
Assuming that we have the ideal silicon pattern 7'(x, y) at the wafer level, we calculate the optimum
photomask pattern M*(x, y) that when put at the scanner will yield such ideal silicon pattern. In other
words, the ILT tries to solve the lithography problem by calculating the inverse of the manufacturing
process transfer function F(). Hence, we can calculate the optimal photomask M* by solving the
equation (1):

M*(x,y) = F N (T(x,y)) (1)

FIGURE 1 shows an example test pattern and its corresponding ILT photomask calculated using
Calibre® pxOPC® [15]. While the M*(x, y) is the clearest option for photomask pixel classifica-
tion, the binary nature of the photomask conceals the process related information which makes it
challenging for the model to infer it while training.
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(a) (b)

Figure 1: Example of a simple target wafer pattern T (a), and its corresponding inverse lithography
ideal photomask M* (b)

We introduce Inverse Intensity Profile [IIP], a novel method to recover the process information
hidden inside the binary photomask function. We calculate //P(x,y) as the spacial convolution
product of the binary mask function M*(x, y) and a predefined Inverse Intensity Kernel (IIK) K (x, y)
as shown in (2):

M*(x,y) ® K(x,y)
[|M*(x,y) ® K(x, y)l|

IIP(x,y) = 2)

The function I7/P(x, y) is a continuous function within the [0, 1] range and it provides information
about the photomask transitions between “opaque” and “transparent” states. The kernel K (x, y) is
an optimization parameter that represents the process characteristics. FIGURE 2 shows the /1P map
corresponding to the pattern in shown in FIGURE 1. Using the introduced /7P allows the model
to learn the process underlying physics during the training phase and hence have more stability and
coherence than when using the original binary function.

4.4 Design Choice #4: Nonuniform Image Compression

A halo region around corrected pattern, a single pixel in our case, is required to provide spacial
awareness about its neighborhood during the correction process. Usually, such halo is referred to
as Interaction Distance (ID) and it is the furthest distance at which another pattern can affect the
correction process. ID is an optimization parameter and is selected based on the required level of
accuracy in the final photomask. For a standard 32nm immersion lithography process, typical ID is
around 1.2um and can be tuned according to accuracy requirements.
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Figure 2: IIP map corresponding to target pattern in FIGURE 1.

Assuming we take a resolution of 1 pixel per 1nm?, an image of size 2001 x 2001 pixels is required
to account for a ID of 1um for every processed pixel. Such image size is too large to use as input
for a ML model as it can slow the runtime and cause overfitting. Increasing the number of pixels
per nm? will further distend the problem.

To fix this issue, we use nonuniform image compression that uses a different compression algorithm
for vertical and horizontal pixel arrangements. This is to retain any directional asymmetries in the
lithography process and allow the model to distinguish different pattern orientations more easly.
Using this compression technique, an image of size 2001 x 2001 will be reduced to 250 x 250
pixels.

4.5 Design Choice #5: End-to-End Correction

Partitioning the ML-RET correction flow adds unnecessary complexity while lacking the historical
justifications that made such approach acceptable for traditional RET flows. Furthermore, cascading
the output of ML-RET into another can magnify the error. We opt to executing the whole ML
lithography correction in one shot as an end-to-end flow, especially that the required input data
for all ML-RET stages already exist in the input images and the IIP map. The benefits of using
an end-to-end flow also includes the simplification of dataset engineering, reduction of training
and verification times, lenient hardware requirements, and appeals to the ML models power to fit
complex patterns.

1933



https://www.oajaiml.com/ | February 2024 Mohamed Habib, et al.

4.6 TPM-RET FLOW ASSEMBLY

Advancing from the previous discussion, we assemble the design pieces into the TPM-RET flow.
We can split the flow into two phases:

Input ili Image Pixels
TUiNE ”Compression,” | w/ Halo
Binoios Training
Ideal '
Photomask Convolution Iﬁ
Inverse

Intensity Kernel
Figure 3: Flow chart for TPM-RET data preparation module.

4.6.1 Data preparation and model training

FIGURE3 shows the flow chart for the data preparation phase for the TPM-RET platform. The
input pattern is used to extract the pixel images by first converting it into a high resolution image
then tile and compress it in order to obtain the images corresponding to the training pixels data.

Simultaneously, the test pattern is corrected via Calibre® pxOPC® to obtain the ILT photomask. The
IIP map is obtained as a function of the photomask domain, 7/P(x, y), by convolving the selected
IIK K (x, y) with the ILT photomask M*(x, y).

The images are then paired to their corresponding IIP value using their pixel coordinates, such that
an image corresponding to pixel p(x,, ) is coupled with the value //P(x,, y ). The obtained data
are next assigned to the classes according to their //P(x, y) value and saved for ML model training.
For the sake of this study, we use 100 IIP classes. The number of classes depends on whether the
intended application requires a fine [IP map or not. Increasing the number of classes does not affect
the runtime for same samples count, but will also require more training samples to populate all the
classes.

Once the data collection is finished, we use the Tensorflow [16] and Keras [17] libraries to construct
and train the CNN model. The training data are split into three unique sets, the training and vali-
dation sets are used for the model training loop while the third set is used for testing the calibrated
model and ensure its accuracy after the training is completed.
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Table 1: TPM-RET Settings.

Parameter Name Value
# Classes 100
Pixels/nm? 4
1D 400nm
K Optimized 32nm [IK

4.6.2 Model deployment and post processing

FIGURE 4 shows the flow chart for the model deployment and post processing phase. First, the
target pattern is tiled into smaller images representing the corrected pixels and their respective ID
distance. Such images are then compressed to match the input size of the CNN model.

The scaling manager organizes the distribution of the pixels data and the predicted IIP class to and
from the CNN model instances respectively. The CNN model evaluates the pixel data p(x,, y,) and
predicts the IIP class equivalent to it I/P(x, y,). The calculated IIP values are then arranged in the
respective order of their input pixels, which ultimately forms the complete IIP map corresponding
to the target pattern.

The IIP map is then converted to a binary pattern by applying a threshold to it, hence defining
the output clear-cut delineated geometries. Post-processing is then applied to convert the obtained
geometries to standard layout format and apply any required clean-ups to meet restrictions on
minimum pattern area or edge length.

Input Pixel é N

npu qf Image Ixels

Pattern Tiling Compression w/ Halo D Nclcl)\ld'\:el
~— \Q/

Scaling
Manager

C d I
orrecte . Full IP
Clean-up < Thresholding Map <] <] IIP Class

J o J N J

Layout

Figure 4: Flow chart for model deployment in photomask optimization application.
It is worth noting that for some applications the IIP map itself can be the desired outputs, such

as electrical stress or heat map, while others require further processing to obtain binary output
representation such as the corrected photomask in case of RET applications.

5. CASE STUDY

For the sake of this paper, we demonstrate the TPM-RET flow by comparing end-to-end results
based on OPC and SRAF correction of a 32nm metal test-pattern. The reference tool is Calibre™
pxOPC™ which is used to generate the ideal photomasks.
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100%

TPM-RET

2doxd

0%

Figure 5: Confusion Matrix for TPM-RET IIP predictions versus the IIP reference generated from
pxOPC photomask.

The test patterns are divided into groups according to topology, width and space. The model training

flow only uses pixel data from the 40nm and 140nm isolated line and line-space patterns.

The

patterns from other dimensions and topologies are used only for testing and results comparison.

The TPM-RET flow prototype is implemented using Python 3.9 [18] and Calibre™ DesignRev™
internal scripting language. ML model training is done using Tensorflow and Keras, and the model
of choice for this case study is mobileNetV3 [19]. The TPM-RET flow settings for the training loop
are listed in TABLE 1.

Target

pxOPC

TPM-RET

60nm Iso Line 140nm Iso Line 250nm Iso line 60nm Iso Contact | 250nm Iso Contact
-_ == = - B
- e~ = ¥ Jull Pm=S
- Ly [N - - 7 o “ - .
,01:_..:-\‘| ¢ o=eee=2\ ,,{__________;“' 27 =5\ .I't —-“\'
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‘~-.-" - E—— ‘\ ~"
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Figure 6: TPM-RET flow results comparison with the reference pxOPC™ for Isolated patterns.
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Figure 7: TPM-RET flow results comparison with pxOPC™ for Line-Space patterns.

The TPM-RET for data-preparation, IIP map prediction and cleanup was run on a 128 Intel® Xeon®
CPU E7-4830 2.1GHz CPU cores and 384GB RAM machine. The ML model training was done on
a separate machine with an Nvidia® Quadro® RTX 4000 GPU and 32GB RAM, which is the only
step in this prototype that needs to be executed in a GPU-based environment.

The testing dataset is used to generate a confusion matrix, FIGURE 5, to compare the accuracy of
TPM-RET versus the reference pxOPC™. The matrix shows well correlation with the reference
results and illustrates good ML model stability.

TPM-RET flow is also used to perform end-to-end correction for the test patterns. FIGURE 6
shows the flow results for isolated lines and contacts, while FIGURE 7, shows its results for line-
space patterns. The results show the correlation between the pxOPC™ and TPM-RET photomasks
for various pattern dimensions although the mobileNetV3 model was only trained for 40nm and
140nm line-space and isolated line patterns. TABLE 2 shows a runtime comparison between TPM-
RET and pxOPC™ for a 5 X 5um test pattern.

Table 2: TPM-RET Runtime Comparison Against pxOPC.

Tool pxOPC TPM-RET
128 CPUs 32 CPUs 128 CPUs
runtime (sec) 314 1105 283

6. DISCUSSION: TPM-RET ADVANTAGES

6.1 Scalability

The true pixel based design, section 4.1, allows the model evaluation for any given pixel to be
independent on neighboring pixels. We take advantage of that by distributing the execution over
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multiple processing units efficiently. Furthermore, the full-chip computation process can be dis-
tributed over CPU grids, since the TPM-RET flow use computationally sparing ML models as
discussed in section 4.2. This is a great advantage as silicon foundries owns huge CPU grid systems
and it is their preferred execution platform.

CPUs
16

32 64 96 128

100.0%

50.0%

Runtime (%)

Figure 8: Logscale chart for TPM-RET runtime scaling versus number of CPUs.

TPM-RET flow scales well with great efficiency as shown in the log-scale chart in FIGURE 8, as
the number of CPUs increase. The chart shows a 125x runtime speed-up running when using 128
CPUs versus a single CPU, providing over 97% scaling efficiency. We foresee the TPM-RET flow
scaling at the same near 1/n rate for larger number of CPU units. The experiment was done on the
same 128 CPU machine from section 5.

The distribution process it self is controlled by the scaling manager module, shown in fig 4. This
module is implemented using custom python code to manage the slicing and reassembly of chip
data with minimal runtime overhead.

6.2 Consistency

TMP-RET flow does not use panning and window slicing to fit the input patterns into its input size.
This eliminates the boundary conflicts and the need for stitching patterns spanning across multiple
correction windows, hence the flow will not generate inconsistent correction due to chip slicing.

Furthermore, the TPM-RET flow does not generate mismatching halo around identical patterns,
since handling the input patterns on a single pixel basis eliminates the case of asymmetrical ID.
This guarantees identical halo around identical pixels, which in turn necessitates same inference
result.
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6.3 Re-Correction

When a photomask error is caught in a traditional RET flow, a photomask correction process is
performed by either tuning the correction recipe and rerunning the flow unto the erroneous areas or
manually if the change scope is manageable.

TPM-RET allows for such re-correction process by allowing a fine-tuned ML model to run over the
pixels representing the erroneous areas. Furthermore, the TPM-RET flow can handle multiple ML
models performing correction at different chip areas by defining the execution ranges of operation
for each of them.

6.4 Full-Chip Ready

TPM-RET flow addresses concerns regarding ML-RET full-chip processing. First, it does not
require stitching or window splitting, which eliminates most of the post processing optimizations
and also clears the inconsistency associated with them as discussed in 6.2.

The flow is also able to scale over large number of CPUs due to its true-pixel-based nature. This
appeals to the CPU infrastructure preferred at silicon foundries, hence eliminating the friction of
adopting GPU based infrastructure as a necessity to use ML-based solutions.

6.5 Recapturing Obfuscated Process Information

The data available in a reference photomask is binary where as any pixel on such mask can be
opaque or bright. Even if the reference is an ideal ILT photomask, the information of the process
and the intermediate steps leading to this mask are concealed.

The IIP algorithm allows the TPM-RET flow to uncover the information masked underneath the
binary photomask and provides a gradual profile describing the transitions between the bright and
opaque areas as discussed in section 4.3. This gives the model more information to work with and
makes it less prone to overfitting.

6.6 End-to-End Solution

As discussed in 3.2.8, traditional RET flows splits the mask correction into consequent steps due
to historical and flow design reasons. ML-RET applications do not have to follow such footsteps,
especially with the complications and potential accuracy setbacks that come with it.

With that in mind, TPM-RET flow is designed as an end-to-end framework for any lithography
applications as long as it initiates from an input layout pattern and ends with a similar sized output.
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6.7 Flexibility

TPM-RET platform can handle different accuracy and resolution settings with minor or no changes.
Prediction accuracy can be controlled by tuning the number of classes, the number of pixels per nm?,
the ID and the IIK. Such changes can be accounted for without any major modifications to the flow.

TPM-RET flow can as well as fit plethora of full chip applications. TPM-RET flow can account
for different correction and modeling tasks by replacing the “ideal photomask” block in FIGURE 3,
with the desired reference and selecting a proper IIK. For a layout simulator, the reference should
be an accurate simulation of the target pattern and a suitable IIK to generate the corresponding 1P
map. Similarly, an electrical stress simulator takes a full-chip stress map as its ideal reference which
can also be used as the [IP map, and the flow output will not require thresholding or clean-up in that
case.

7. FUTURE WORK
Our future work plans for TPM-RET include the following items:

1. Convert the TPM-RET Python code to C/C++ [20] to improve execution runtime and optimize
the model evaluations for CPU platforms.

2. Develop an algorithm to filter and select the pixels data generated from the TPM-RET data-
preparation module.

3. Implement re-correction and multi-model execution features.

8. CONCLUSIONS

In this study, we reviewed the traditional RET techniques as well as ML-RET state-of-the-art.
We highlighted the main obstacles preventing production-ready ML-RET technologies. We then
introduced TPM-RET flow, a novel ML platform capable of performing end-to-end lithography
mask optimization in a consistent and production friendly manner while achieving a near 1/n CPU
scalability. We demonstrated the flow based on a 32nm immersion lithography technology test
patterns by performing an end-to-end correction targeting both OPC and SRAF. Finally, we shared
our future work and improvement plans for the TPM-RET flow.
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