
Advances in Artificial Intelligence and Machine Learning; Perspective 1 (1) 958-976 Received 5-2-2023; Accepted 23-3-2023; Published 30-3-2023

General Cyclical Training of Neural Networks

Leslie N. Smith leslie.smith@nrl.navy.mil
U.S. Naval Research Laboratory,
Naval Center for Applied Research in AI, Code 5514
4555 Overlook Ave., SW.,
Washington, D.C. 20375

Corresponding Author: Leslie N. Smith

Copyright © 2023 Leslie N. Smith. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Abstract
This position paper describes the principle of “General Cyclical Training” in machine learn-
ing, where training starts and ends with “easy training” and the “hard training” happens
during the middle epochs. We propose several manifestations for training neural networks,
including algorithmic examples (via hyper-parameters and loss functions), data-based ex-
amples, and model-based examples. Specifically, we introduce several novel techniques:
cyclical weight decay, cyclical batch size, cyclical focal loss, cyclical softmax temperature,
cyclical data augmentation, cyclical gradient clipping, and cyclical semi-supervised learning.
In addition, we demonstrate that cyclical weight decay, cyclical softmax temperature, and
cyclical gradient clipping (as three examples of this principle) are beneficial in the test accu-
racy performance of a trained model. Furthermore, we discuss model-based examples (such
as pretraining and knowledge distillation) from the perspective of general cyclical training
and recommend some changes to the typical training methodology. In summary, this paper
defines the general cyclical training concept and discusses several specific ways in which
this concept can be applied to training neural networks. In the spirit of reproducibility, the
code used in our experiments is available at https://github.com/lnsmith54/CFL.

Keywords: Deep learning, Training neural Networks, Curriculum learning, Cyclical hyper-
parameters

1. INTRODUCTION

Deep neural networks lie at the heart of many of the artificial intelligence applications that are
ubiquitous in our society. Over the past several years, methods for training these networks have
become more automatic [1–5], but still remain more an art than a science. This paper introduces the
high-level concept of general cyclical training as another step in making it easier to optimally train
neural networks. We argue that many of the settings that are held constant throughout training need
not be and training improves when they are not constant.

We define general cyclical training as any collection of settings where the training starts and ends
with “easy training” and the “hard training” happens during the middle epochs. In other words,
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it can be considered as a combination of curriculum learning [6], in the early epochs with fine-
tuning toward the end of training, plus training over the full problem space for greater generalization
happening during the middle epochs. General cyclical training is analogous to curriculum learning
in the sense that numerous specific techniques can embody its principles. The difference is that
curriculum learning resembles learning in childhood, while general cyclical training resembles a
human lifetime of learning.

It has been shown that many important aspects of neural network learning take place within the very
earliest iterations or epochs of training [7, 8]. It is best to construct neural network training such that
the network’s weight updates during the earliest epochs are relatively easy and of the highest quality
for the task. This first part of a network’s training could use a curriculum learning approach. As the
training proceeds, one increases the learning to span the full problem space and the hard work of
learning to generalize is achieved during the middle epochs. The final epochs of the training should
fine-tune the model on the desired data or tasks, because this is when the network learns the more
complex patterns [9], from the most relevant training samples.

Based on the above intuition, this paper proposes that cyclical approaches for training can be gen-
eralized to all aspects of neural network training. In addition to learning rates [10], cyclical training
can extend to other hyper-parameters, such as weight decay and batch size. In addition to hyper-
parameters, this approach can be extended to loss functions, data-based methods, and model-based
methods. For example, data augmentation methods can be cyclical by using no augmentation or
weak augmentations early in the training cycle, then adding complex augmentations as the training
proceeds, and eliminating augmentations in the later part of training. In addition, general cyclical
training answers the question, “Which samples should be learned first?” In most scenarios, one
should learn the easy, most relevant samples first and the hard ones during the middle epochs.

Adaptive hyper-parameters during training have become common. Cyclical learning rates [10],
one cycle learning rates [11], and cosine annealing with warm restarts [12], have been accepted
by the deep learning community and incorporated in PyTorch. General cyclical training provides
an intuitive understanding for the value of a one cycle training regime. Furthermore, this idea
of allowing a hyper-parameter value to change during training has been extended to other hyper-
parameters, such as weight decay [13–16], and batch sizes [17].

In summary, the concept of general cyclical training is to start training in a simpler fashion during the
early epochs, to train within the entire problem space and challenging conditions during the middle
epochs, and to finish with fine-tuning on the most confident samples. General cyclical training
includes adapting any and all factors that impact the network’s training (i.e., hyper-parameters,
data, loss functions).

2. GENERAL CYCLICAL TRAINING

When training in machine learning, and especially with neural networks, there are several settings
that the practitioners must set that impact the final performance of the model. There are decisions
regarding the hyper-parameters and the training samples that impact not only the ease of the training,
but also the final generalization performance.
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More formally, let us define the set of training settings 𝑃 = {(𝑃 𝑗) : 𝑗 ∈ (0, 1, ..., 𝑛)}, where 𝑃0 can
be a hyper-parameter value, a subset of the data, or a set of any combination that is easiest for the
network to learn, while 𝑃𝑛 represents the set of training environmental conditions that is difficult
for the network to learn. In practice, one chooses a single 𝑃 𝑗 as a trade-off that provides the best
performance. A cyclical approach improves on this trade-off by using a range of settings: at the
beginning of the training, use a smaller 𝑗 to jump-start the learning, shift gradually to 𝑃 𝑗 for a larger
𝑗 during the middle of the training, and followed that with settings for which there is a decrease of
𝑗 to the end of training.

The general structure of cyclical training can proceed with any schedule over some range of 𝑗 for
𝑃 = {(𝑃 𝑗) : 𝑗 ∈ (0, 1, ..., 𝑛)}, but for the sake of simplicity, we limit our comments to a linear
schedule from 𝑃𝑖 to 𝑃𝑚 according to

𝜉𝑘𝑃𝑖 + (1 − 𝜉𝑘)𝑃𝑚 (1)

where 𝜉𝑘 is defined over the training for a number of epochs 𝑒𝑛 as:

𝜉𝑘 =

{
1 − 𝑓𝑐

𝑒𝑘
𝑒𝑛

if 𝑓𝑐 × 𝑒𝑘 ≤ 𝑒𝑛(
𝑓𝑐

𝑒𝑘
𝑒𝑛

− 1
)
/( 𝑓𝑐 − 1) otherwise

(2)

where 𝑒𝑘 corresponds to the current training epoch number. Here, we introduce a cyclical factor 𝑓𝑐
that generalizes the shape of the cycle. If 𝑓𝑐 = 1, Equation 1 goes from the 𝑃𝑖 at the beginning of
the training to 𝑃𝑚 at the end (see FIGURE 1). If 𝑓𝑐 = 2, the shape for 𝜉𝑘 resembles an upside down
equilateral triangle (i.e., going from 𝑃𝑖 to 𝑃𝑚 in the first half of training and from 𝑃𝑚 to 𝑃𝑖 in the
second half). If 𝑓𝑐 = 4, 𝑃𝑚, is reached at a quarter of the way through the training and then linearly
decreases from 𝑃𝑚 to 𝑃𝑖 for the remaining epochs. Although we don’t discuss any other schedule,
one can imitate the more complex learning rate schedules, such as stochastic gradient descent with
warm restarts (SGDR) [12], or a polynomial schedule.

Furthermore, we use 𝑃𝑖 instead of 𝑃0 and 𝑃𝑚 instead of 𝑃𝑛 where 𝑖 ≥ 0 and 𝑚 ≤ 𝑛 to incorporate
the flexibility not to include in the training regime settings that are too easy or too difficult.

3. ALGORITHMIC EXAMPLES

Algorithmic examples primarily include the use of dynamic hyper-parameters and various loss
functions, which are discussed in this Section.

3.1 Hyper-Parameters and Regularization

The use of a decaying learning rate schedule (where the learning rate value is reduced during the
training) is standard practice for network training but the use of adaptive hyper-parameters during
training has become more common relatively recently. For example, the use of cyclical learning
rates [10–12], has become widely accepted by the deep learning community. Unlike the decaying
learning rate schedule, cyclical learning rates start with a small value of the learning rate, which
enables the network’s weights to move toward a good direction in the loss landscape [18], and
increases the learning rate in the early epochs. In addition, learning rate warmup [19], is essentially
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Figure 1: Effect of 𝑓𝑐 on the cyclical schedule: This figure shows the impact of different values
for 𝑓𝑐 on the cyclical schedule.

equivalent to cyclical learning rates, although the warm up period is often restricted to a few of the
early epochs (i.e., the same as setting 𝑓𝑐 in Equation 2 to a large value).

This idea of allowing a hyper-parameter value to change during training (in replacement for a
learning rate schedule) has been extended to other hyper-parameters, such as weight decay [13–
16], and batch sizes [17]. Previous work [20], has demonstrated empirically a relationship between
the optimal hyper-parameters of learning rate (LR), weight decay (WD), batch size (BS), and mo-
mentum (m) as

𝐿𝑅 ×𝑊𝐷

𝐵𝑆 × (1 − 𝑚) ≃ 10−6. (3)

Equation 3 and the success of cyclical learning rates implies that a cyclical approach alsomight work
for weight decay, batch size, and momentum as well. That is, it might be easier for the network to
learn when weight decay or momentum starts smaller or if batch size starts larger, followed by a
larger weight decay/momentum or smaller batch size in the middle epochs. While [17], proposed
increasing batch size instead of decreasing the learning rate, we propose taking this a step further to
a cyclical batch size.

In addition, one can combine small cyclical changes in all four hyper-parameters (i.e., LR, WD,
BS, and momentum) because it reduces the amount of hyper-parameter tuning required — so long
as the optimal values of the hyper-parameters are within the range of the cyclical values, good
generalization results can be obtained. That is, we found that being close counts in training networks.
Finally, we mention that in our experiments, we found that much of the benefits of cyclical training
may be achieved with even one cyclical hyper-parameter.
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Table 1: Cyclical Weight Decay: Top-1 test classification accuracies comparing cyclical weight
decay (CWD) to constant weight decay for CIFAR-10, 4K CIFAR-10 (i.e., only 4000
training samples), CIFAR-100, and ImageNet. In all of these experiments, CWD improved
on the network’s performance as compared to training with a constant weight decay.

Data set Accuracy Accuracy Accuracy Accuracy
CIFAR-10 97.33± 0.07 97.36± 0.02 97.45± 0.11 97.47± 0.06
WD range 5 × 10−4 4 × 10−4 − 6 × 10−4 2 × 10−4 − 8 × 10−4 10−4 − 10−3

4K CIFAR-10 86.68± 0.34 86.95± 0.21 87.35± 0.03 87.55± 0.23
WD range 5 × 10−4 4 × 10−4 − 6 × 10−4 2 × 10−4 − 8 × 10−4 10−4 − 10−3

CIFAR-100 83.82± 0.26 84.27± 0.31 84.44± 0.19 84.36± 0.12
WD range 2 × 10−4 10−4 − 3 × 10−4 5 × 10−5 − 5 × 10−4 5 × 10−5 − 7 × 10−4

ImageNet 80.27± 0.01 80.50± 0.05 80.49± 0.01 80.41± 0.11
WD range 2 × 10−5 10−5 − 3 × 10−5 5 × 10−6 − 5 × 10−5 5 × 10−6 − 7 × 10−5

As an example of general cyclical training with hyper-parameters and for regularization, we here
propose and test cyclical weight decay (CWD). In CWD, the value for weight decay varies over the
course of the training by:

𝑊𝐷 = 𝜉𝑘𝑊𝐷𝑚𝑖𝑛 + (1 − 𝜉𝑘)𝑊𝐷𝑚𝑎𝑥 , (4)

where 𝜉𝑘 follows Equation 2 and𝑊𝐷𝑚𝑖𝑛 and𝑊𝐷𝑚𝑎𝑥 are user-defined hyper-parameters that spec-
ify the range for weight decay.

TABLE 1 compares the test accuracies for cyclical weight decay (CWD) to training with optimized
hyper-parameters (with a constant weight decay) and learning rate warmstart and cosine annealing
[12]. For each dataset in this Table there are two rows: the first row presents the mean test accuracy
and the standard deviation over four runs (for ImageNet, this is the mean and standard deviation
over two runs), and the second row provides the range of weight decay used in the training. The
second column in the Table provides the results of training with a constant weight decay, and the
subsequent columns, show the results of training with an increasing range for weight decay. In our
experiments, we found that the performance was relatively insensitive to the value of 𝑓𝑐.

The results in TABLE 1 show that even though the constant hyper-parameters were optimized, there
is a benefit to training over a range of weight decay values. For CIFAR-10, using cyclical weight
decay improves the network performance relative to using a constant value of 5 × 10−3, and the
range from 10−4 to 10−3 has the best performance but using the range from 2 × 10−4 to 8 × 10−3 is
within the precision of our experiments. Although the gain is small, there is no computational cost
to using a range of weight decay and using a range reduces the amount of hyper-parameter tuning
required.

The second row of TABLE 1 shows the results when training on only a fraction of the CIFAR-10
training set. Here we used the first 4,000 samples in the CIFAR-10 training dataset. Using cyclical
weight decay improves the network performance relative to using a constant value of 5× 10−3, and
the range from 10−4 to 10−3 has the best performance. It is noteworthy that CWD provides a more
substantial benefit when the amount of training data is limited. In addition, the third row of TABLE
1 shows results for CIFAR-100 and the range from 10−4 to 8 × 10−4 has the best performance.
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The fourth row of TABLE 1 shows the results of our experiments with CWD on ImageNet. For
ImageNet, the optimal weight decay is 2×10−5. Using cyclical weight decay improves the network
performance relative to using a constant value and the gain appears to be stable over the small ranges
we used in our experiments. FIGURE 2 compares the test accuracy curves during training for on
ImageNet with a constant weight decay versus a range (test accuracy from single ImageNet runs
are plotted). While the two curves are similar, the test accuracy rises slightly faster for the cyclical
weight decay experiment, which illustrates that the smaller values for weight decay in the earlier
epochs allow for slightly faster training than is provided by a constant weight decay. In addition,
note from TABLE 1 that the final test accuracy for training with cyclical weight decay is higher than
for using a constant weight decay.

Cyclical weight decay introduces a new hyper-parameter, 𝑓𝑐, in addition to the user-defined𝑊𝐷𝑚𝑖𝑛

and 𝑊𝐷𝑚𝑎𝑥 . FIGURE 3 shows the test accuracies from training with a range of values for 𝑓𝑐 in
CWD on ImageNet with a TResNet_m architecture [21]. The Figure compares the accuracies when
using two different weight decay ranges and the shapes of these curves imply different optimal
values for 𝑓𝑐. Actually, these results are mostly within the precision of our experiments, implying
that the performance is relatively insensitive to the value of 𝑓𝑐. In TABLE 1, we used a value of
𝑓𝑐 = 4 for training with CWD.

Implementation of cyclical weight decay is straightforward and is described in the Appendix. Fur-
thermore, PyTorch code is provided at https://github.com/lnsmith54/CFL to aid in the repro-
ducibility of our experiments.

3.2 Loss Functions

In this Section we describe how the cyclical approaches can be applied to loss functions. A recent
paper proposes a novel cyclical focal loss (CFL) [22], which emphasizes the confident samples early
and late but focuses on the misclassified examples in the middle of training. This is accomplished
by introducing a new loss term to the focal loss [23], term that weights confident samples more
heavily than the cross-entropy softmax does and is used in the beginning and the end of the training.
In addition, the focal loss term is used during the middle epochs because it more heavily weights
hard, less confident samples. The result is a loss function that is superior to either the cross-entropy
softmax or focal loss across balanced, imbalanced, or long-tailed datasets.

Another example of a cyclical loss function is possible by making the softmax temperature [24],
dynamic— letting the temperature vary over the course of the training. We call this method cyclical
softmax temperature (CST).

Softmax with temperature [24], can be expressed as:

𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑝(𝑧𝑖/𝑇)∑𝑁
𝑗=1 𝑒𝑥𝑝(𝑧 𝑗/𝑇)

(5)

where 𝑧𝑖 is the model’s predictions or logits and 𝑇 is the softmax temperature. Typically, the
temperature is 1 in softmax. If the temperature is less than 1, the softmax predictions become more
confident. This is also referred to as “hard” softmax probabilities. If T is greater than 1, then the
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Figure 2: CWD on ImageNet: This figure shows the ImageNet test accuracy curve during training
for cyclical weight decay versus a constant weight decay. The difference between the
curves is minor, but shows cyclical weight decay allows a slightly faster rise in test
accuracy.

Table 2: Cyclical Softmax Temperature: CIFAR-10, CIFAR-100 and ImageNet top-1 test
classification accuracies comparing cyclical softmax temperature (CST) to softmax with a
temperature = 1. For all three datasets, CST with a temperature from 0.5 to 2 improved on
the network’s performance as compared to training with T = 1. 𝑓𝑐 = 1 were used in these
experiments.

Data set 𝑇 = 1 𝑇 = 0.75 − 1.5 𝑇 = 0.5 − 2.0 𝑇 = 0.33 − 3.0
CIFAR-10 97.33± 0.07 97.32± 0.07 97.43±0.06 97.28± 0.12
4K CIFAR-10 86.68± 0.34 87.14±0.21 87.09±0.35 87.16± 0.54
CIFAR-100 83.82± 0.26 83.91± 0.13 83.98± 0.25 83.19± 0.21
ImageNet 80.27±0.01 80.42±0.12 80.50±0.04 80.12±0.13

predictions are less confident (also called “soft” probabilities). Softer probabilities provide more
information from the network as to which classes seem similar to the target class.

The intuition for cyclical softmax temperature is that in the first epochs, more confident predictions
will help start moving the network’s weights in the right direction. However, in the middle and
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Figure 3: Sensitivity of 𝑓𝑐: This figure shows the ImageNet test accuracy for a range of values for
𝑓𝑐 when trained with cyclical weight decay. The accuracy changes are small over this
range of 𝑓𝑐 values and 𝑓𝑐 = 2 or 4 are generally good values.

later epochs, softer probabilities are more appropriate for the remaining training samples. In ad-
dition, softer probabilities reduce the confidence miscalibration of the predictions [25], so that the
network’s training is based on losses that better match reality.

Specifically, we propose a cyclical softmax temperature (CST) where the value for the temperature
varies over the course of the training by replacing 𝑇 in Equation 5 with 𝑇𝑐, which we define as:

𝑇𝑐 = 𝜉𝑘𝑇𝑚𝑖𝑛 + (1 − 𝜉𝑘)𝑇𝑚𝑎𝑥 (6)

where 𝜉𝑘 follows Equation 2, and 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 are user-defined hyper-parameters that specify the
range for the softmax temperature.

TABLE 2 provides the top-1 test accuracies for CIFAR-10, 4K CIFAR-10, CIFAR-100, and Ima-
geNet when training with cyclical softmax temperatures. Our experiments include using a constant
𝑇 = 1 in softmax (column 2), and ranges of 𝑇 = 0.75 to 1.5 (column 3), 𝑇 = 0.5 to 2 (column 4),
and 𝑇 = 0.33 to 3 (column 5). In addition, we found that the best performance was obtained with a
value of 𝑓𝑐 = 1, which is what we used in our experimental results shown in TABLE 2. In all four
datasets, using a range of temperatures we obtained a modest improvement over the constant 𝑇 = 1
results. We obtained our best results for a temperature range of 𝑇 = 0.5 − 2, and the performance
usually suffered when the range was increased to 𝑇 = 0.33 − 3. While the improvements are small,
there is little to no cost to use cyclical softmax temperatures in the range from 𝑇 = 0.5 − 2.
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The implementation of cyclical softmax temperature is straightforward and PyTorch code is avail-
able at https://github.com/lnsmith54/CFL to aid reproducibility.

4. DATA-BASED EXAMPLES

Data is essential for training neural networks; the characteristics of the data greatly impact the train-
ing. There is a recent focus in the deep learning community on training data and data augmentation:
Andrew Ng launched a campaign for data-centric machine learning and held his first data-centric
AI competition1.

The data-based examples of general cyclical training discussed here primarily include varying the
use of data augmentation methods and varying which data are used during training. In addition,
we discuss in this Section the proposed technique of varying the amount of unlabeled data included
during training for semi-supervised learning.

4.1 Data Augmentation

Data augmentation is used widely and includes numerous techniques for improving the general-
ization ability of deep networks by transforming the training data in ways that do not change the
associated label. A substantial amount of work has gone into the topic of data augmentation and
finding automated ways to find the optimal amount and types of data augmentation for training a
network on a specific dataset [26–31]. However, the previous methods assume that the amount of
data augmentation used is constant from the start to the end of training.

Here, we argue that a better technique is to start and endwithout any data augmentation (or onlyweak
augmentation) and to use an increasing and then decreasing strength of augmentation in the middle
epochs. This follows naturally from the premise of this paper: to ease and encourage learning in the
earliest iterations or epochs, then gradually to increase the span of the problem space of the network’s
learning as the training progresses. This implies starting with no or only very weak augmentation
(i.e., image flips) and gradually incorporating stronger augmentation as the training progresses.
In addition, as one approaches the end of the training, it is intuitive to eliminate the strong data
augmentation and to fine-tune in the final epochs on the original training data to encourage learning
of more prototypical patterns [9].

One important question that needs to be explored is how to assign data augmentation transformations
on a scale fromweak to strong. Intuitively, it is reasonable to measure a transformation by the degree
that the transformation modifies the original image’s statistics. Some have assigned image flip and
shift transformation as weak augmentation, while strong augmentation includes a number of the
image transformations included in the Python Image Library [27], mixup [31], and cutout [29].

While it is natural at this point in a research paper to test our hypothesis on cyclical data augmenta-
tion (CDA), as a higher level position paper that covers several specific manifestations of the general

1 More information is available at https://https-deeplearning-ai.github.io/data-centric-comp/
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cyclical training concept, we leave the investigation of a metric for the strength of data augmentation
(from the perspective of the trained network) and the testing of CDA for future work.

4.2 Data

Not every training example contributes to a network’s learning in the same way. Training data
examples can differ from each other in quality, how representative they are of their class, and
uniqueness. A training sample might have distracting backgrounds, corruptions, or a poor fore-
ground/background ratio. For these reasons and more, training samples have been divided into
categories of easy/medium/hard [32, 33]. This has led to the research question: Which training
samples should be learned first and then in what order?

Kumar, et al. [34], propose that the order is determined by how easy the samples are to learn. The
authors propose a self-paced learning algorithm where training starts with only easy samples and
the number of samples increases with each epoch until all the training data is used. They define easy
as “a set of samples is easy if it admits a good fit in the model space”. The authors demonstrated on
a SVM that their learning algorithm outperformed training on all of the training data.

This algorithm is an example of data-based cyclical training, which corresponds to setting 𝑓𝑐 = 1
in Equation 2. We argue that this self-paced learning algorithm would outperform training on all
the training data for deep networks based on the same logic in this earlier work [34]. In addition,
Kumar, et al. provides evidence that a data-based cyclical training approach likely would be at least
comparable to training on a constant training on all the training data.

One of the challenges of data-based cyclical training is to automatically measure how easy or hard
each training sample is to learn while training the network. Such a metric should be with respect to
the learner at its current competency level.

This is an open question but we suggest that each sample’s loss can be used as one such measure.
Since it is desirable in the early epochs to reduce the contributions to the loss of harder examples with
high loss, this implies that a cyclical gradient clipping (CGC) method could improve a network’s
training. Specifically, the clipping threshold would be relatively low at the start of training, would
increase to a large value in the middle epochs, and gradually would decrease to a low threshold at
the end of the training epochs. A small variation on this method is to set to zero the contribution to
the loss of any sample exceeding this cyclical threshold rather than clipping the loss, which would
be equivalent to eliminating the hard samples from the training. Therefore, this variation to cyclical
gradient clipping is one way to implement cyclical data training.

TABLE 3 shows results for cyclical gradient clipping that follows the formula:

𝐶 = 𝜉𝑘𝐺𝐶𝑚𝑖𝑛 + (1 − 𝜉𝑘)𝐺𝐶𝑚𝑎𝑥 (7)

where 𝐶 is the gradient clipping threshold, 𝜉𝑘 follows Equation 2, and 𝐺𝐶𝑚𝑖𝑛 and 𝐺𝐶𝑚𝑎𝑥 are user-
defined hyper-parameters that specify the range of values to use for clipping. The first column of
this Table gives the dataset name, the second gives the accuracy without clipping, and the third is
the performance for cyclical gradient clipping, which provides evidence supporting our hypothesis
in this Section (i.e., to start with easy training samples, use hard ones in the middle epochs, and end
with easy training samples). In this example, we used a clipping mode of value and set 𝐺𝐶𝑚𝑖𝑛 = 4
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and 𝐺𝐶𝑚𝑎𝑥 = 10. In these experiments 𝑓𝑐 = 2 was used. These results show a small improvement
with cyclical clipping. We did not test the variation discussed above where the contribution of
samples exceeding the clipping threshold is set to zero, which would provide additional evidence to
the benefits of cyclical training with data.

Finally, we note that some researchers suggest that better results can be obtained by training with
hard samples first [33]. These authors demonstrate this for imbalanced datasets, where they define
“hard” as the same as rare examples. This is fundamentally different from how Kumar, et al. or we
define “easy/hard”. In the case of training a highly imbalanced dataset, it is reasonable to include
rare examples from the beginning. The way one defines easy or hard is crucial when stating this
question.

Table 3: Cyclical gradient clipping: Comparison of the test classification accuracies for CIFAR-
10, CIFAR-100, and ImageNet. The first column gives the dataset name, the second gives
the accuracy without clipping, and the third gives the performance for cyclical gradient
clipping with a clipping minimum value of 4 (mode is value) and a maximum value of 10
( 𝑓𝑐 = 2). These results show an improvement with cyclical gradient clipping.

Dataset No clipping Clip = 4 to 10
CIFAR-10 97.33± 0.07 97.48± 0.03
CIFAR-100 83.82± 0.26 84.11± 0.05
ImageNet 80.27± 0.01 80.38± 0.02

4.3 Semi-supervised Learning

Semi-supervised learning is a hybrid between supervised and unsupervised learning, which com-
bines the benefits of both [35]. As with supervised learning, semi-supervised learning defines a
task (i.e., classification) from the labeled data, but typically, it requires many fewer labeled samples
than supervised learning by leveraging feature learning from unlabeled data to avoid overfitting the
limited labeled samples.

Based on the general cyclical concept, this paper proposes a cyclical semi-supervised learning
approach where one starts training the network with only the small labeled dataset and increasingly
includes learning with unlabeled samples in the first part of training. In the second part of the
training, the learning with unlabeled samples is decreased gradually so that the training ends with
training only on the labeled target data (i.e., fine-tuning on the labeled data, possibly with weak data
augmentation). We leave the testing of this technique to future work.

5. MODEL-BASED EXAMPLES

The principle of general cyclical training can extend to the network’s architecture. Although it is cur-
rently unusual for the architecture to change while training, there exists work on growing a network
during training [36–38]. However, it is more practical to consider the the general cyclical training
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principle in the scenarios involving more than one network, such as with transfer learning/pre-
training and with teacher-student/knowledge distillation [24, 39].

This Section discusses how cyclical training concepts imply procedural changes to training in two
important domains: pre-training a network and knowledge distillation. We leave the testing of the
techniques discussed in this Section to future work.

5.1 Transfer Learning and Pre-training

A common technique used in situations involving a limited number of labeled training data is to pre-
train the network’s weights on a large, labeled source dataset that has similar characteristics to the
target dataset or to use unsupervised pre-training when there’s a large number of unlabeled samples.
Pre-training is similar to transfer learning when a network’s weights were trained on another dataset
and are used to initialize the weights and then the model is fine-tuned on the target dataset. In both
cases, the goal is to maximize the performance on the target data, rather than maximizing the source
data performance.

General cyclical training provides guidance on techniques for pre-training. It is intuitive that the
pre-training stage represents the first part of the cycle, where the training should start easy (i.e.,
HP, data augmentation, and loss), and fully span the problem space as the training proceeds (i.e., to
be inclusive of the target data’s features). This is equivalent to using 𝑓𝑐 = 1 in Equation 2 when
pre-training. Fine-tuning on the target dataset is equivalent to the second half of the cycle, which
implies a large value for 𝑓𝑐. Therefore, it is wise to consider the two training steps (i.e., pre-training
and fine-tuning) as part of a single training cycle.

For example, if one is training for the purpose of transfer learning, one should start training in an
easy manner (to encourage the weights to move in an optimal direction) and end with hard training.
Specifically, one can use the techniques described in this paper with 𝑓𝑐 = 1, such as cyclical softmax
temperature, cyclical data augmentation, and cyclical weight decay. This should prepare the learned
features better than the standard training methodology and there is no computational cost in doing
this. Then one can employ a fine-tuning methodology with the target data, such as using a small
learning rate and minimizing the use of strong data augmentation.

5.2 Knowledge Distillation

Knowledge distillation was described by Hinton, et al. [24], using two networks for model com-
pression: the teacher and student networks. Usually, the student network is smaller than the teacher
network and the goal is network compression, in which the smaller student network achieves similar
performance as the teacher.

In student-teacher model compression, it is desirable that the student networks should learn as much
as possible from the teacher [39], with the goal of maximizing the mutual information between the
teacher and student. For this reason, the student loss function often contains not simply a cross-
entropy softmax for the labels, but also loss terms for the student to match the teacher’s features (the
features from the teacher’s hidden layers are also called “dark information”). This includes deep
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supervision, in which features at several layers are matched and not just the final hidden layer’s
features [40, 41].

Along these lines, it is helpful when training the student to diversify the training characteristics.
This can include using cyclical data augmentation so the student is exposed to strong augmentation
during the middle epochs (in addition to weak augmentation for the early and final epochs). It also
can include using cyclical softmax temperature, where the higher temperatures expose the student
to what the teacher considers as other close classes in addition to training the student to classify the
target class.

We note that there exists work on teacher-student models in which the teacher chooses what the
student should learn [42, 43]. The teacher, in these cases, is guided by curriculum learning in the
choice of data or task for the student to learn; these techniques also can be modified to be cyclical.

6. DISCUSSION

This position paper introduces the concept of general cyclical training, which we define as any
collection of techniques where training starts and ends with “easy training” and the “hard training”
happens during the middle epochs. In other words, we can consider a combination of curriculum
learning in the early epochs, training on the full expanse of the problem space in the middle epochs,
and fine-tuning at the end as general cyclical training. In addition, general cyclical training is
analogous to curriculum learning in the sense that numerous specific techniques can embody its
principles but it is different in that curriculum learning resembles learning in childhood, while
general cyclical training resembles a lifetime of learning.

This paper specified several novel techniques that follow this principle: cyclical weight decay,
cyclical batchsize, cyclical softmax temperature, cyclical data augmentation, cyclical gradient clip-
ping, and cyclical semi-supervised learning. Each of these techniques is unique, but they are all
manifestations of the same concept. We provided empirical evidence for some of these techniques
by showing that they can improve the test performance of trained models, which is also evidence of
the validity of the general cyclical training concept.

Although several novel methods are described in this paper, these are only a few of the many
potential cyclical techniques that are possible. Curriculum learning can be considered a component
of cyclical training and at the time of this writing, there are well over 3,000 citations to Bengio, et
al. [6]: how many of these can be converted to a cyclical technique?

Although cyclical methods introduce new hyper-parameters, one of the benefits of cyclical training
methods is a potential overall reduction of the amount of hyper-parameter tuning that is required.
In this paper, we have demonstrated that the cliche of “close” applies in neural network training
(in addition to the game of horseshoes and with hand grenades). That is, if the optimal training
hyper-parameters fall within the cyclical ranges, even if not in the center, the trained network’s
performance is generally optimal. When using ranges rather than specific values, a grid search will
require fewer tests.
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The intended purposes of this paper is to propose the general cyclical training hypothesis, for the
reader to find general cyclical training enlightening, and that it illustrates relationships between
previously separate methods. We hope that it encourages the creation of additional novel techniques
based on its principles.
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Appendix A. Software and Implementation

We used PyTorch Image Models (timm) [44], as a framework in our experiments on CIFAR and
ImageNet. This framework provides the models and downloads the data used in our experiments.
The original code is available at https://github.com/rwightman/pytorch-image-models.
The file train.py was modified by inserting additional several new input parameters via calls to
add_argument and adding a few lines of code for cyclical weight decay (CWD), cyclical softmax
temperature (CST), and cyclical gradient clipping (CGC).

Specifically, implementing CWD and CGC involves including the following in the training loop:

i f a r g s . wd_min > 0 or a r g s . c l i p _m in > 0 :
i f a r g s . c y c l i c a l _ f a c t o r*epoch < num_epochs :

e t a = 1 . 0 − a r g s . c y c l i c a l _ f a c t o r *epoch / ( num_epochs −1)
e l i f a r g s . c y c l i c a l _ f a c t o r == 1 . 0 :

e t a = 0
e l s e :

e t a = ( a r g s . c y c l i c a l _ f a c t o r*epoch / ( num_epochs −1) − 1 . 0 ) /
( a r g s . c y c l i c a l _ f a c t o r − 1 . 0 )

i f a r g s . wd_min > 0 :
o p t im i z e r . pa ram_groups [ 0 ] [ ’ we igh t_decay ’ ] =

(1 − e t a )* a r g s . wd_max + e t a*a r g s . wd_min
e l i f a r g s . c l i p _m in > 0 :

a r g s . c l i p _ g r a d = (1 − e t a )* a r g s . c l ip_max + e t a*a r g s . c l i p _m in

Similarly, implementing CST can be performed as follows:

i f a r g s . T_min > 0 :
i f a r g s . c y c l i c a l _ f a c t o r*epoch < a r g s . epochs :

e t a = 1 . 0 − a r g s . c y c l i c a l _ f a c t o r *epoch / ( a r g s . epochs −1)
e l i f a r g s . c y c l i c a l _ f a c t o r == 1 . 0 :

e t a = 0
e l s e :

e t a = ( a r g s . c y c l i c a l _ f a c t o r*epoch / ( a r g s . epochs −1) − 1 . 0 ) /
( a r g s . c y c l i c a l _ f a c t o r − 1 . 0 )

Tempera tu r e = (1 − e t a )* a r g s . T_max + e t a*a r g s . T_min
o u t p u t = t o r c h . d i v ( ou tpu t , Tempera tu r e )

The full revised train.py is available as part of our code-base at https://github.com/lnsmith54/
CFL.
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Table 4: The hyper-parameters used for experiments whose results are presented in the main paper.

Table Dataset Model Batch size LR WD 𝑓𝑐
Table 1 CIFAR-10 TResNet_m 384 0.15 5 × 10−4 2, 2, 2
Table 1 CIFAR-100 TResNet_m 64 0.2 2 × 10−4 2, 2, 2
Table 1 ImageNet TResNet_m 192 0.6 2 × 10−5 1,4,4
Table 2 CIFAR-10 TResNet_m 384 0.15 5 × 10−4 1, 1, 1
Table 2 CIFAR-100 TResNet_m 64 0.2 2 × 10−4 1, 1, 1
Table 2 ImageNet TResNet_m 192 0.6 2 × 10−5 1, 1, 1
Table 3 CIFAR-10 TResNet_m 384 0.15 5 × 10−4 2
Table 3 CIFAR-100 TResNet_m 64 0.2 2 × 10−4 2
Table 3 ImageNet TResNet_m 192 0.6 2 × 10−5 2

Appendix B. Command Lines and Hyper-parameters

In the spirit of easy replication, it is important to know the values of the hyper-parameters used.
TABLE 4 specifies the batch sizes, learning rates, and weight decay values used for the results in
TABLE 1, TABLE 2 and TABLE 3 in the main body of the paper.

Here, we present the command line for submitting an experiment on cyclical softmax temperature
(CST) with Imagenet:

./distributed_train.sh 4 data/imagenet -b=192 --lr=0.6 --warmup-lr 0.02
--warmup-epochs 3 --T_min 0.5 --T_max 2 --weight-decay 2e-5 --cooldown-epochs 1
--model-ema --checkpoint-hist 4 --workers 8 --aa=rand-m9-mstd0.5-inc1 -j=16 --amp
--model=tresnet_m --epochs=200 --mixup=0.2 --sched='cosine' --reprob=0.4
--remode=pixel --cyclical_factor 1

Default values for hyper-parameters not specified in this command line were used (i.e., see the soft-
ware at https://github.com/lnsmith54/CFL or the original code at https://github.com/
rwightman/pytorch-image-models for default values of the hyper-parameters). The new hyper-
parameters for CST (i.e., T_min and T_max) are specified on the command line. For cyclical weight
decay (CWD), the command line was modified by replacing:

--T_min 0.5 --T_max 2 --weight-decay 2e-5
--cyclical_factor 1

with:

--wd_min 1e-5 --wd_max 8e-5
--cyclical_factor 2

For CIFAR-10, the following command line was used for CST:
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CUDA_VISIBLE_DEVICES=0 python train.py data/cifar10 --dataset torch/cifar10
-b 384 --model tresnet_m --checkpoint-hist 4 --sched cosine --epochs 200 --lr 0.5
--warmup-lr 0.01 --warmup-epochs 3 --cooldown-epochs 1 --weight-decay 5e-4
--T_min 0.5 --T_max 2 --amp --remode pixel --reprob 0.6 --aug-splits 3
--aa rand-m9-mstd0.5-inc1 --resplit --split-bn --dist-bn reduce --cyclical_factor 1

For CIFAR-100, the following command line was used for CST:

CUDA_VISIBLE_DEVICES=0 python train.py data/cifar100 --dataset torch/cifar100
-b 64 --model tresnet_m --checkpoint-hist 4 --sched cosine --epochs 200 --lr 0.2
--warmup-lr 0.01 --warmup-epochs 3 --cooldown-epochs 1 --weight-decay 2e-4
--T_min 0.5 --T_max 2 --amp --remode pixel --reprob 0.6 --aug-splits 3
--aa rand-m9-mstd0.5-inc1 --resplit --split-bn --dist-bn reduce --cyclical_factor 1

As with ImageNet, for cyclical weight decay (CWD), each of the above command lines were
modified by replacing:

--T_min 0.5 --T_max 2 --weight-decay 2e-5
--cyclical_factor 1

with:

--wd_min 1e-5 --wd_max 8e-5
--cyclical_factor 2

The default values for hyper-parameters are available in the software.
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