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Abstract
Expert knowledge representations often fail to determine compatibility levels on all objects,
and these levels are represented for a certain sampling of universe. The samplings for the
fuzzy terms of the linguistic variable, whose compatibility functions are aggregated accord-
ing to a certain problem, may also be different. In such a case, neither L.A. Zadeh’s analysis
of fuzzy sets and even the dual forms of developing today R.R. Yager’s q-rung orthopair fuzzy
sets cannot provide the necessary aggregations. This fact, as a given, can be considered as
a source of new types of information, in order to obtain different levels of compatibility
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according to Zadeh, presented throughout the universe. This source of information can
be represented as a pair ⟨A, fA⟩, where there is some crisp subset of the universe A that
determines the sampling of objects from the universe, and a function fA determines the com-
patibility levels of the elements of that sampling. It is a notion of split fuzzy set, constructed in
this article, that allows for the semantic representation and aggregation of such information.
This notion is again and again based on the notion of Zadeh fuzzy set. In particular, the
operation of splitting a crisp subset into dual fuzzy sets is introduced.

Definitions of set operations on split dual fuzzy-sets are presented in the paper. The proofs
are also presented that follow naturally from definitions and previous results.An example of
MADM is presented for illustration of the application of splitting operation.

Keywords: Fuzzy sets, Set splitting, Duality of imperfect information, Uncertainty and
imprecision of imperfect information, Q-Rungorthopair fuzzy sets, Lattices.

1. INTRODUCTION

In the study of complex events analysis and synthesis problems, the use of L.A. Zadeh’s theory of
fuzzy sets [1] has the particular importance today, when the problems of semantic representation
of expert qualitative information are quite acute due to the complicated nature of the objects under
study. Existing approaches to measuring the degrees of compatibility precision of studying objects
are no longer satisfactory to today’s researchers. This is why the two sides of imprecision- the
levels of object compatibility and incompatibility - are becoming more and more independent in
new research [2–20]. This independence is due to the dual representation of evaluation. Duality is
becoming an important element in the presentation of incomplete information today, and study on
the imprecisions and uncertainties of modeling complex events deserves a great attention. The most
common direction of these issues today is to represent the dual nature of information evaluation in
some independent degrees of belonging and non-belonging. This idea first came fromAtanasov [2].

The intuitionistic fuzzy sets (IFS) theory by Atanasov [2] represents a new extension of Zadeh’s
fuzzy sets (FS) theory [1]. Because to each element of IFS, as Intuitionistic fuzzy number (IFN)
(µ, ν) is assigned a membership degree (µ), a non-membership degree (v) and a hesitancy degree
(1 − µ, 1 − ν), IFS is much capable to deal with vagueness than FS. IFS theory was extensively
utilized in various problems of different areas [1, 2]. Definitions of main arithmetic operations
on IFN are given in [2, 3]. The IFS theory is found to be intensively applicable in decision-
making direction of research. After consideration of the huge number of existing materials, the
authors of [5] presented a scientometric review on IFS studies. At the same time the IFN (µ, ν)
has a serious constraint - the sum of membership and non-membership degrees must be or less
than 1. Nevertheless, it may happen that a DM provides such data for certain attribute that the
aforementioned sum is greater than 1 (µ+ ν > 1). To cope with such case Yager [6, 7] introduced
the concept of the Pythagorean fuzzy set (PFS) as a generalization of IFS, where a Pythagorean
fuzzy number (PFN) (µ, ν) has a weaker constraint - the sum of squared degrees of membership
and non-membership satisfies the inequalityµ2+ν2 ≤ 1. But in many expert orthopair assessments,
neither PFNs nor IFNs can describe fully intellectual activity, because the assessment psychology
of a decision maker (DM)is too intricate for hard decision-making, and the attribute’s information
is still problematic to express with PFNs or IFNs. This problem was solved by Yager again [8, 9].
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He introduced the notion of a q-rung orthopair fuzzy set (q-ROFS), where q ≥ 1, and the sum
of the qth power of the degrees of membership and non-membership cannot exceed 1. For a q-
rung orthopair fuzzy number (q-ROFN) we have (µq + νq ≤ 1). The fundamentals of arithmetic
operations on such numbers are presented in [10, 12]. Obviously, the q-ROFSs are generalization
of IFSs and PFSs. The IFSs and PFSs represent the particular cases of the q-ROFSs for q = 1 and
q = 2. Thus, q-ROFNs appear to be more suitable and capable for expressing DM’s assessment
information. Study on Aggregations of experts’ q-rung orthopair fuzzy evaluations are actively
developed in different works of authors of this paper in multi-criteria decision-making problems
[10–22]. A completely different approach to dual representation of a fuzzy set is developed in [23].
In this paper, the concept of lower a-level sets of fuzzy sets is introduced, which is regarded as a
dual concept of upper α-level sets of fuzzy sets. Authors introduces a new concept of dual fuzzy
sets. Dual decomposition theorem is established. The dual arithmetic of fuzzy sets in R1 is studied
and established some interesting results based on the upper and lower α-level sets.

In practice, there are frequent cases when experts are unable to determine the levels of compatibility
on all objects. In fact, these levels are represented by a certain sampling of the universe. Experts
may make these samplings different. Samplings for the fuzzy terms of linguistic variables may also
be different. But aggregations of such information are still needed, and the universe may not be fully
represented at all. In such a case, neither the Zadeh fuzzy set analysis nor the dual forms presented
here in the form of q-rung orthogonal fuzzy sets can provide the required aggregations.

Actually, it means the following. For any expert from certain universe Ω = {ω1, . . . , ωn}, a certain
sampling of items A = {ωi1 , . . . , ωiA} is available for evaluation. Suppose the compatibility levels
generated by any expert are represented as some function fA(ω) : A → [0, 1], where the values
are known only on the elements of the set A ⊂ Ω. This data may be different for his/her other
evaluations or for those of other experts. The new type of information source differs from that
involved in determining the levels of compatibility according to Zadeh’s point of view. In this case
the source of information is presented by pairs ⟨A, fA⟩. We are dealing with a source and data of
a different nature. Namely the possibility of semantic representation of such information by the
notion of split fuzzy set constructed in this article is offered, which is again and again based on
Zadeh’s concept of a fuzzy set. In particular, the operation of splitting a crisp subset into dual fuzzy
sets is introduced. It is this dual, split fuzzy sets lattice that will create a unified environment for
aggregating expert evaluations of different samplings.

The second section explains the operation of splitting a crisp set indicator into dual fuzzy sets. It
also explains the notions of splitting representations for sets union, intersection, Cartesian product,
and other operations indicators. The third section studies the lattice of split elements of the Boolean
lattice of indicators I, where it is proved that the splitting lattice of all elements of this lattice Ĩ is the
Braeuer lattice. A number of facts about the properties of this lattice are given. The fourth section
explains the operation of splitting a crisp set, which is equivalent to the operation of splitting its
own indicator. The main properties of this operation with some proofs are given. The concept of
the generalized degree of the universe is explained, which is the lattice of the elements obtained by
splitting all the subsets of the universe. It is proved that this lattice is the Brewer lattice. In order
to study this lattice, the fifth section discusses some formulas for conditional pseudo-addition of a
lattice element. The sixth section considers some properties of the operation of splitting of sets. The
seventh section discusses the ideal of split elements of Ĩ and the ideal of their pseudo-additions. It
is proved that this lattice is equivalent to the Boolean lattice I.
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2. OPERATION OF SPLITTING OF AN INDICATOR

Consider the source of information discussed in the introduction for expert evaluations. Suppose
that, for any expert from some universe Ω = {ω1, . . . , ωn} a certain sampling of elements is
available for evaluation. Suppose the compatibility levels generated by the expert are represented
as a certain function fA(ω) : A → [0, 1], where the values are known only to the elements of the
set A ⊂ Ω. This data may be different for his/her other evaluations as well for other experts. The
new type of information source differs from that involved in determining the levels of compatibility
according to Zadeh’s point of view [1]. In this case the source of information is presented by pairs
⟨A, fA⟩. Let A ⊂ Ω and IA ∈ {0, 1}Ω be its indicator. Represent it in the following form

IA(ω) = f(ω)IA(ω) + (1− f(ω))IA(ω) , ω ∈ Ω , (1)

where f(ω) : Ω → [0, 1] is some continuation of the function fA(ω) : A → [0, 1] on the universe
Ω (f(ω) = fA(ω), ω ∈ A).

Definition 1 Let us call representation (1) a splitting of indicator IA with respect to function f .

Introduce notations:

IÃ(ω) ≡ f(ω)IA(ω) and
IÃD(ω) ≡ (1− f(ω))IA(ω) . (2)

Indicators IÃ , IÃD ∈ [0, 1]Ω of two fuzzy subsets Ã, ÃD ⊂ Ω are called splitting of an indicator
IA of a subset A ⊂ Ω and

IA = IÃ + IÃD . (3)

Definition 2 Indicators IÃ , IÃD ∈ [0, 1]Ω as well as fuzzy subsets Ã, ÃD ⊂ Ω are called dual,
respectively.

According to L. Zadeh [24] IÃ is an indicator or membership function (compatibility function) of
some fuzzy subset Ã. It is clear that splitting does not depend on the continuation of the function
fA(ω) : A→ [0, 1]. More exactly, the pair ⟨A, fA⟩ induces a pair of splitting fuzzy sets (Ã, ÃD).

Example 1.1 Let be given a set of digits Ω = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Let also be given the
sampling of universe as some subset A ⊂ Ω. For example, suppose that A is a set of odd dig-
its - A = {1, 3, 5, 7, 9} and let expert’s evaluation only on this sampling is given by the func-
tion fA(ω) : A → [0, 1], fA(ω) = 1

ω+1 , ω ∈ A. Let f(ω) : Ω → [0, 1] be any contin-
uation of the function fA(ω) on Ω. Then the splitting of the IA of the subset A ⊂ Ω on the
universeΩ into two dual fuzzy sets (or their indicators (membership functions)) looks like this: Ã =
{0/0, 1/(1/2), 2/0, 3/(1/4), 4/0, 5/(1/6), 6/0, 7/(1/8), 8/0, 9/(1/10)} and
ÃD = {0/0, 1/(1/2), 2/0, 3/(3/4), 4/0, 5/(5/6), 6/0, 7/(7/8), 8/0, 9/9/10} .

Practically, dual splitting fuzzy subsets
〈
Ã, ÃD

〉
are created as fuzzy subsets on the universe Ω.

Practical interpretation looks like following: Sometimes for the description of some uncertain term
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of some linguistic variable on the elements of an universewe usually constructmembership function.
But for the extension of the information containing in the membership function to only on some
elements of concrete crisp subset, we are splitting this set into dual split fuzzy subsets. So, the
extended information is contained in dual fuzzy sets. Duality of this extension means that both
fuzzy sets contain the same information, but codified in different ways.

It is to mention that, splitting dual fuzzy subsets Ã, ÃD on Ω are induced by the subset A, A ⊂ Ω
and some function fA(ω) : A→ [0, 1].

As mentioned earlier, the possibility of using the split operation can arise in many cases. Here is
one case.Let now consider an example on application of splitting a set into dual fuzzy sets inmulti-
attribute decision making (MADM).

Consider aMADMmodelwith 5 attributesS = {s1, s2, . . . , s5} and 3 alternativesD = {d1, d2, d3}.
Suppose that a decision-making matrix represents a matrix of normed ratings in [0,1], where some
ratings are not given:

D/S s1 s2 s3 s4 s5
d1 0.2 - 0.7 0.6 -
d2 - 0.4 - 0.3 0.8
d3 0.3 0.5 0.6 - -

As can be seen from this matrix, for each alternative there are attributes for which the rating evalua-
tions are not presented. Such unusual cases can arise in practice for many reasons. One is when the
number of attributes is quite large due to the deep detailing of the task, and it is difficult for experts
to make a rating assessment on all attributes. Such cases often arise when building recommendation
models in collaborative filtering problems. These empty elements need to be filled somehow. This
problem can be successfully implemented with a machine learning approach, if, of course, there
is a large amount of prehistoric data. Otherwise, when we do not have objective data and expert
evaluations are of the sparse type, the splitting operation presented here can be a way out! We see
that the alternative d1 is evaluated on a subset of attributes S1 ≡ {s1, s3, s4}, the alternative d2 is
evaluated on a subset of attributes S2 ≡ {s2, s4, s5}, and the alternative d3 is evaluated on a subset
of attributes S3 ≡ {s1, s2, s3}. Let us split these sets into dual fuzzy sets. Then the decision matrix
can be written as:

D/S s1 s2 s3 s4 s5
Ãd1

0.2 0.0 0.7 0.6 0.0
ÃD

d1
0.8 0.0 0.3 0.4 0.0

Ãd2
0.0 0.4 0.0 0.3 0.8

ÃD
d2

0.0 0.6 0.0 0.7 0.2
Ãd3

0.3 0.5 0.6 0.0 0.0
ÃD

d3
0.7 0.5 0.4 0.0 0.0

Therefore, the alternative di i = 1, 2, 3 is represented by dual split fuzzy subsets
〈
Adi

, AD
di

〉
on the

whole universe of attributes S = {s1, s2, . . . , s5}.The creation of an aggregation instrument and the
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ways of constructing ranking relations can be developed in many directions, where the definitions
and results presented in the following paragraphs on the operations of dual split sets will be used.
Here is a simple solution. Combine the elements of split dual fuzzy sets into pairwise intuitionistic
fuzzy numbers by a simple concatenation:

Here, of course, attention is drawn to the symbolic intuitionistic fuzzy number (0.0,0.0), whose
attribution and non-attribution values are 0.0, which indicates the information that the evaluation
is not done. As a matter of fact, if we gave a formula-quantitative value to ratings that are not
evaluated by such representations, it is natural to replace it with zero intuitionistic fuzzy numerical
rating - (0.0,1.0). Then the decision-making matrix takes the following form.

D/S s1 s2 s3 s4 s5
d1 (0.2,0.8) (0.0,1.0) (0.7,0.3) (0.6,0.4) (0.0,1.0)
d2 (0.0,1.0) (0.4,0.6) (0.0,1.0) (0.7,0.3) (0.8,0.2)
d3 (0.3,0.7) (0.5,0.5) (0.6,0.4) (0.0,1.0) (0.0,1.0)

Suppose that the vector of attribute weights in this model is W = {w1, w2, . . . , w5} = {0.1, 0.2,
0.4, 0.1, 0.2}.

For ranking of alternatives let us use the intuitionistic fuzzy weighted averaging (IFWA) operator:

di ∼ IFWA(a1, . . . , a5).

For example, for d1 we will have:

d1 ∼ 0.1⊗ (0.2, 0.8) ⊕ 0.2⊗ (0.0, 1.0)⊕ 0.4⊗ (0.7, 0.3)⊕ 0.1⊗ (0.6, 0.4)⊕ 0.2⊗ (0.0, 1.0) ,

where ⊕ and ⊗ denote addition and multiplication operations on intuitionistic fuzzy numbers,
respectively.

2.1 Splitting of an ordinary complement indicator IAC

Easy to see that for given splitting IA the splitting IAC does not depend on IÃ, since IACIA = 0.
Formally,

IAC = IAC
2 = (IΩ − IÃ − IÃD)IAC = I¬ÃIAC + (1− I¬Ã)IAC , (4)

where we introduced notation

I¬Ã = 1− IÃ = IÃD ∨ IAC . (5)

Therefore,

IÃC = I¬ÃIAC = (IÃD ∨ IAC )IAC = IAC ,

I
ÃC

D = (1− I¬Ã)IAC = IÃIAC = 0. (6)
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2.2 Splitting of an indicator of intersection IA∩B

For any f(ω) , g(ω) ∈ [0, 1]Ω we can write splittings of IA and IB .

IA(ω) = f(ω)IA(ω) + (1− f(ω))IA(ω) ,

IB(ω) = g(ω)IB(ω) + (1− g(ω))IB(ω) .
(7)

Further,

IA∩B(ω) = IA(ω) ∧ IB(ω)

= IA(ω)IB(ω)

= f(ω)g(ω)IA(ω)IB(ω) + f(ω)(1− g(ω))IA(ω)IB(ω)

+ (1− f(ω))g(ω)IA(ω)IB(ω) + (1− f(ω))(1− g(ω))IA(ω)IB(ω).

(8)

If we require split indicators to meet the same condition as non-split indicators

I
Ã∩B ≤ IÃ , IB̃ , (9)

then from (8) we have two equivalentrepresentations:

I
Ã∩B = (IÃ ∧ IB̃) (10)

and
I
Ã∩B = (IÃ • IB̃). (11)

Indeed, in the first case we have:

IA∩B(ω) =


[f(ω)g(ω)IA • IB + f(ω)(1− g(ω))IA • IB] + [(1− f(ω))g(ω)IA • IB

+(1− f(ω))(1− g(ω))IA • IB], ∀ω : f(ω) ≤ g(ω) ;

[f(ω)g(ω)IA • IB + (1− f(ω))g(ω)IA • IB]
+[f(ω)(1− g(ω))IA • IB + (1− f(ω))(1− g(ω))IA • IB] , ∀ω : g(ω) ≤ f(ω);

=

{
f(ω)IA(ω)(IA • IB) + (1− f(ω))IA(ω)(IA • IB) , ∀ω : f(ω) ≤ g(ω);

g(ω)IB(ω)(IA • IB) + (1− g(ω))IB(ω)(IA • IB) , ∀ω : g(ω) ≤ f(ω);

= (IÃ(ω) ∧ IB̃(ω))(IA • IB) + (IÃ(ω) ∧ IB̃(ω))
D(IA • IB)

= IÃ(ω) ∧ IB̃(ω) + (IÃ(ω) ∧ IB̃(ω))
D. (12)

In the second case, if we combine the terms of (8) like this:

IA∩B = (IÃ • IB̃)(IA • IB) + [(IÃ • IB̃D) + (IÃD • IB̃) + (IÃD • IB̃D)] ,

i.e., if we consider (IÃ • IB̃) as the result of splitting IA∩B , then this splitting will also satisfy
condition (9), i.e.

IA∩B = (IÃ • IB̃)IA∩B + (IÃ • IB̃)
DIA∩B. (13)

In contrast with (IÃ ∧ IB̃), we call expression (IÃ • IB̃) a “sequential” splitting of the indicator
IA∩B . Indeed, consider IA∩B and split IA, we get

IA∩B = (IÃ + IÃD)IB = (IÃ • IB)IA∩B + (IÃD • IB)IA∩B.
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Therefore, in this case
I
Ã∩B = (IÃ • IB)IA∩B.

Now split IA∩B sequentially by help of function IB , we get:

I
Ã∩B = IB̃ • IÃ∩B + (1− IB̃)IÃ∩B.

Thus, in this case

I˜̃
A∩B

= IB̃ • IÃ∩B = IB̃ • (IÃ • IB) • IA∩B = IÃ • IB̃. (14)

2.3 Splitting of an indicator of union IA∪B

The splitting of an indicator IA∪B can be constructed from the following relationships:

IA∪B(ω) = IA∪(AC∩B)(ω) = IA(ω) + IAC∩B(ω) = IA(ω) + IAC (ω)IB(ω)

= f(ω)IA(ω) + (1− f(ω))IA(ω) + IAC (ω)(g(ω)IB(ω) + (1− g(ω))IB(ω))

= f(ω)IA(ω) + g(ω)IAC (ω)IB(ω) + (1− f(ω))IA(ω) + (1− g(ω))IAC (ω)IB(ω).

Analogously,

IA∪B(ω) = IB∪(A∩BC)(ω) = IB(ω) + IA∩BC (ω) = IB(ω) + IBC (ω)IA(ω)

= g(ω)IB(ω) + (1− g(ω))IB(ω) + IBC (ω)(f(ω)IA(ω) + (1− f(ω))IA(ω))

= g(ω)IB(ω) + f(ω)IBC (ω)IA(ω) + (1− g(ω))IB(ω) + (1− f(ω))IBC (ω)IA(ω) .

Taking into account the property of idempotency of indicators we have:

IA∪B(ω) =


[f(ω)IA(ω) + g(ω)IAC (ω)IB(ω)]IA∪B(ω)

+[(1− f(ω)IA(ω) + g(ω)IAC (ω)IB(ω))]IA∪B(ω);

[g(ω)IB(ω) + f(ω)IA(ω)IBC (ω)]IA∪B(ω)

+[(1− g(ω)IB(ω) + f(ω)IA(ω)IBC (ω))]IA∪B(ω);

=


[f(ω)IA(ω) ∨ g(ω)IAC (ω)IB(ω)]IA∪B(ω)

+[(1− f(ω)IA(ω) ∨ g(ω)IAC (ω)IB(ω))]IA∪B(ω);

[g(ω)IB(ω) ∨ f(ω)IA(ω)IBC (ω)]IA∪B(ω)

+[(1− g(ω)IB(ω) ∨ f(ω)IA(ω)IBC (ω))]IA∪B(ω) .

(15)

If you require split indicators to meet the same condition as non-split indicators:

I
Ã∪B ≥ IÃ , I ˜̄B

, (16)

i.e., if we consider that the choice of the law of point grouping should provide the order for split
indicators

max (f(ω)IA(ω) , g(ω)IB(ω)) ≤ (f(ω)IA(ω) ∨ g(ω)IAC (ω)IB(ω))

∨ (g(ω)IB(ω) ∨ f(ω)IA(ω)IBC (ω))

= (f(ω)IA(ω) ∨ f(ω)IA(ω)IBC (ω))

∨ (g(ω)IB(ω) ∨ g(ω)IAC (ω)IB(ω))

= (f(ω)IA(ω) ∨ g(ω)IB(ω)) ,

(17)
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then (15) can be rewritten as follows

IA∪B(ω) = (f(ω)IA(ω) ∨ g(ω)IB(ω))IA∪B(ω) + (1− (f(ω)IA(ω) ∨ g(ω)IB(ω)))IA∪B(ω)

= (IÃ ∨ IB̃)(ω)IA∪B(ω) + (1− (IÃ ∨ IB̃))(ω)IA∪B(ω),

or
I
Ã∪B = IÃ ∨ IB̃. (18)

Now let us consider the procedure of “sequential” splitting. We have

IA∪B = IA + IB − IA∩B.

With “simultaneous” splitting IA and IB , we get:

I
Ã∪B = IÃ + IB̃ − IÃ∩B̃,

Since
IÃ ∨ IB̃ + IÃ ∧ IB̃ = IÃ + IB̃ ,

then this implies that when the union indicator is “simultaneously” split

I
Ã∪B = IÃ ∨ IB̃ = IÃ∪B̃.

With “sequential” splitting, obviously,

I˜̃
A∪B

= IÃ + IB̃ − IÃ • IB̃. (19)

2.4 Splitting of an Indicator of Cartesian Product IA×B

Let A , B be any subsets of universes Ω1 and Ω2, respectively. For ordinary subsets

IA×B(ω1 , ω2) = I(A×Ω2)∩(Ω1×B)(ω1 , ω2), (20)

where A×B ⊆ Ω1 × Ω2.

Let us split IA(ω1) and IB(ω2). Due to subsection 1.2 of this paper:

I
Ã×B

(ω1 , ω2) = I ˜(A×Ω2)∩(Ω1×B)
(ω1 , ω2)

=

{
I
Ã×Ω2

(ω1 , ω2) ∧ I
Ω̃1×B

(ω1 , ω2) , (simultaneos splitting) ,

I
Ã×Ω2

(ω1 , ω2) • IΩ̃1×B
(ω1 , ω2) , (sequential splitting) .

Since for crisp subsets we have

IA×Ω2
(ω1 , ω2) = IA(ω1) and IΩ1×B(ω1, ω2) = IB(ω2),

then similar relationships occur for fuzzy subsets, i.e.

I
Ã×Ω2

(ω1 , ω2) = IÃ(ω1) and IΩ̃1×B
(ω1 , ω2) = IB̃(ω2).

Finally,

I
Ã×B

(ω1, ω2) =

{
IÃ(ω1 ) ∧ IB̃(ω2) , (simultaneos splitting)

IÃ(ω1 ) • IB̃(ω2) , (sequential splitting).
(21)
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2.5 Decomposition of a Splitting Indicator IÃ

Let α ∈ [0, 1]. The indicator of the α-level of the split indicator will be called the non-split indicator

IAα
(ω) = I{ω:ω⊆Ω , IÃ(ω)≥α} , (22)

Aα is a level set of the fuzzy set Ã.

Further, let us call the elementary splitting of the α-level of the universal set Ω a fuzzy subset
determined by the indicator:

IΩ̃α
(ω) = α , ∀ω ∈ Ω. (23)

The following important property is valid:

∀α1 , α2 ∈ [0, 1] : α1 ≥ α2 ⇒ IAα1
(ω) ≤ IAα2

(ω), ω ∈ Ω. (24)

Theorem 1 (Decomposition theorem) Let IÃ be an arbitrary split indicator and {IAα
} be level

sets, then
IÃ(ω) = ∨

α∈[0,1]
(IΩ̃α

(ω) ∧ IAα
(ω)). (25)

Proof The proof follows directly from (22) and (23).

The decomposition theorem can be applied not only for analysis, but also for synthesis. If we
consider some chain (meaning the natural ordering) of non-split indicators {Iα} and if (24) is
fulfilled, then according to (25) we get a kind of split indicator.

3. Lattice of split elements of the Boolean lattice of indicators i

In any Boolean lattice B, the element aC (complement of a) is the largest among those x that a ∧
x = 0. Generally, a ∧ x ≤ b if and only if a ∧ x ∧ bC = 0,i.e. when (a ∧ bC) ∧ x = 0, or
x ≤ (a ∧ bC)C = aC ∨ b. In addition, the element aC has special properties:

aC ∨ a = E and aC ∧ a = 0. (26)

If we take i = ([0, 1]Ω ;∨,∧) in the role of B, then the elements will be the indicators of subsets,
and E = IΩ, 0 = I∅. Consider all possible splitting of the elements of i. The set of all these split
elements ĩ = ([0, 1]Ω ;∨,∧), ordered in a natural manner, is a lattice.

Theorem 2 The lattice ĩ is the Brewer lattice.

See the proof in Appendix A.

Remark 1 The relative pseudo-complement of IÃ in IB̃ , as well as the split complement IÃC , does
not depend on the splitting of the indicator IA.

486



https://www.oajaiml.com/ | November-2022 Gia Sirbiladze, et al.

Theorem 3 In the lattice ĩ we have the followingpropositions. If Ã, B̃ ∈ ĩ then

(i) if IÃ ≤ IB̃ , then (I∅ : IB̃) ≤ (I∅ : IÃ) ;

(ii) IÃ ≤ (I∅ : (I∅ : IÃ)) ;

(iii) ( I∅ : IÃ) = (I∅ : (I∅ : (I∅ : IÃ))) ;

(iv) ( I∅ : (IÃ ∨ IB̃)) = (I∅ : IÃ) ∧ (I∅ : IB̃) ;

(v) ( I∅ : (IÃ ∧ IB̃)) = (I∅ : IÃ) ∨ (I∅ : IB̃) .

(27)

See the proof in Appendix A.

Theorem 4 In the lattice ĩ we have the following propositions. If Ã, B̃, C̃ ∈ ĩ, then

(i) (IÃ : IB̃) ∧ IÃ = IÃ ;

(ii) (IÃ : IB̃) ∧ IB̃ = IÃ ∧ IB̃ ;

(iii) ((IÃ ∧ IB̃) : IC̃) = (IÃ : IC̃) ∧ (IB̃ : IC̃) ;

(iv) (IÃ : (IB̃ ∨ IC̃)) = (IÃ : IB̃) ∧ (IÃ : IC̃) .

(28)

See the proof in Appendix A.

4. SPLITTING OF A SET

Definition 3 Splittingof a crisp set is equivalent to the splitting of the corresponding indicator and
is formally represented as follows

(IA = IÃ + IÃD ⇄ (A = Ã⊕ ÃD) (29)

where ⊕ is a splitting operation of a set.

As it was mentioned, from the Def.1 for the splitting of a crisp set A the building materials are an
indicator IA and some function fA(ω) : A→ [0, 1]. We interpret the split set on Ã into and its dual
split set ÃD as a fuzzy subset in the sense of Zadeh [24]. With this interpretation, IÃ is considered
as an indicator (membership function) of a fuzzy split subset Ã.

By virtue of Def. 3, formulas (4), (9) and (10) we have the following relationships:

(I
Ã∩B = IÃ ∧ IB̃) ⇄ (Ã ∩B = Ã ∩ B̃), (30)

(I
Ã∪B = IÃ ∨ IB̃) ⇄ (Ã ∪B = Ã ∪ B̃), (31)

(I¬Ã = IΩ − IÃ) = (¬Ã). (32)

In addition, as a definition, we also consider the relationship:

(IÃ ≤ IB̃) ⇄ (Ã ⊆ B̃). (33)

For split sets, the following laws are very easily verified:
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1. Reflexivity:
Ã ⊆ Ã. (34)

2. Anti-symmetricity:
(Ã ⊆ B̃, B̃ ⊆ Ã)⇒ (Ã = B̃). (35)

3. Transitivity:
(Ã ⊆ B̃, B̃ ⊆ C̃)⇒ (Ã ⊆ C̃). (36)

4. Idempotency:
Ã ∩ Ã = Ã

Ã ∪ Ã = Ã.
(37)

5. Commutativity:
Ã ∩ B̃ = B̃ ∩ Ã

Ã ∪ B̃ = B̃ ∪ Ã.
(38)

6. Associativity:
(Ã ∩ B̃) ∩ C̃ = Ã ∩ (B̃ ∩ C̃)

(Ã ∪ B̃) ∪ C̃ = Ã ∪ (B̃ ∪ C̃).
(39)

7. Distributivity:
Ã ∩ (B̃ ∪ C̃) = (Ã ∩ B̃) ∪ (Ã ∩ C̃)

Ã ∪ (B̃ ∩ C̃) = (Ã ∪ B̃) ∩ (Ã ∪ C̃).
(40)

8. Absorption laws:
Ã ∩ (Ã ∪ B̃) = Ã

Ã ∪ (Ã ∩ B̃) = Ã.
(41)

9. The law of involution for the dual element:

(ÃD)D = Ã. (42)

10. The law of Involution for the fuzzy complement:

¬(¬ Ã) = Ã. (43)

11. Identity:
Ã ∪ ∅ = Ã Ã ∩ Ω = Ã

Ã ∪ Ω = Ω Ã ∩ ∅ = ∅.
(44)

12. The law of order circulation:

(Ã ⊆ B̃)⇔ (¬B̃ ⊆ ¬Ã). (45)

13. De Morgan’s laws:
¬(Ã ∪ B̃) = (¬Ã) ∩ (¬B̃)

¬(Ã ∩ B̃) = (¬Ã) ∪ (¬B̃).
(46)
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14. Duality laws for union and intersection of split subsets:

(Ã ∪ B̃)D = (ÃD ∩ B̃D) ∪ (ÃC ∩ B̃D) ∪ (B̃C ∩ ÃD)

(Ã ∩ B̃)D = (A ∩ B̃D) ∪ (B ∩ ÃD)
(47)

For example, let us prove the laws 13 and 14. We have:

¬(Ã ∪ B̃) ⇄ 1− IÃ∪B̃ = 1− (IÃ ∨ IB̃) = (1− IÃ) ∧ (1− IB̃) = I¬Ã ∧ I¬B̃ ⇄ (¬Ã) ∩ (¬B̃)

¬(Ã ∩ B̃) ⇄ 1− IÃ∩B̃ = 1− (IÃ ∧ IB̃) = (1− IÃ) ∨ (1− IB̃) = I¬Ã ∨ I¬B̃ ⇄ (¬Ã) ∪ (¬B̃).

To prove the first law (47), let us proceed as follows. On the one hand,

¬(IÃ ∨ IB̃) = (IA ∨ IB)
C ∨ (IÃ ∨ IB̃)

D = (IÃ ∨ IB̃)
D ∨ (IAC ∧ IBC ).

Since (sup(IÃ ∨ IB̃)
D)∩) sup(IAC ∧ IBC )) = ∅(sup(IÃ ∨ IB̃)

D)∩) sup(IAC ∧ IBC )) = ∅, then

¬(IÃ ∨ IB̃) = (IÃ ∨ IB̃)
D + (IAC ∧ IBC ). (48)

On the other hand, according to (46)

¬(IÃ ∨ IB̃) = I¬Ã ∧ I¬B̃ = (IAC ∨ IÃD) ∧ (IBC ∨ IB̃D)

= (IAC ∧ IBC ) ∨ (IAC ∧ IB̃D) ∨ (IÃD ∧ IBC ) ∨ (IÃD ∧ IB̃D) .

Similarly, to the previous case

(sup(IAC ∧ IBC )) ∩ (sup(IAC ∧ IB̃D) ∨ (IÃD ∧ IBC ) ∨ (IÃD ∧ IB̃D)) = ∅.

Therefore,

¬(IÃ ∨ IB̃) = (IAC ∧ IBC ) +
[
(IAC ∧ IB̃D) ∨ (IÃD ∧ IBC ) ∨ (IÃD ∧ IB̃D)

]
. (49)

Comparing (48) and (49), we obtain the required proof.

Let us now prove the second law (47). We have

(¬(IÃ ∧ IB̃)) ∧ (IA ∧ IB) = (I¬̃A ∨ I¬̃B) ∧ (IA ∧ IB)

= ((IAC ∨ IÃD) ∨ (IB̃D ∨ IBC )) ∧ (IA ∧ IB)

= (IAC ∧ (IA ∧ IB)) ∨ (IÃD ∧ (IA ∧ IB))

∨ (IBC ∧ (IA ∧ IB)) ∨ (IB̃D ∧ (IA ∧ IB))

= (IA ∧ IB̃D) ∨ (IÃD ∧ IB) .

Consider some examples of splitting sets.

Example 1 Let Ω be a universal set, A,B ⊆ Ω.

We have the equalityA\B = A∩BC . If we split subsetsA andB, then the splitting of this equality,
according to (5) and (10), will be as follows:

Ã\B = Ã ∩BC = Ã ∩ B̃C = Ã ∩ (∅ : B̃). (50)

Note that the splitting of a difference does not depend on the splitting of a “subtrahend”. In addition,
Ã\B is not in any relation to Ã\B̃, because the last expression is not defined by us at all.
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Example 2 Splitting of a symmetric difference.

We have:
A∆B = (A\B) ∪ (B\A),

(Ã∆B) = (Ã\B) ∪ (B̃\A)

= (Ã ∩BC) ∪ (B̃ ∩AC).

(51)

On the other hand,
A∆B = (A ∪B)\(A ∩B)

Therefore, for the split symmetric difference, we have such a formula

(Ã∆B) = (Ã ∪B) ∩ (A ∩B)C = (Ã ∪ B̃) ∩ (AC ∪BC) (52)

According to (51) and (52) we have

(Ã ∩BC) ∪ (B̃ ∩AC) = (Ã ∪ B̃) ∩ (AC ∪BC). (53)

In fact, according to (40) we have

(Ã ∪ B̃) ∩ (AC ∪BC) = (Ã ∩ (AC ∪BC)) ∪ (B̃ ∩ (AC ∪BC))

= ((Ã ∩AC) ∪ (Ã ∩BC)) ∪ ((B̃ ∩AC) ∪ (B̃ ∩BC))

= (Ã ∩BC) ∪ (B̃ ∩AC) .

(51) and (52) can be rewritten as

(Ã∆B) = (Ã ∩BC) ∪ (B̃ ∩AC)

= (Ã ∪ B̃) ∩ (AC ∪BC)

= (Ã ∩ (∅ : B̃)) ∪ (B̃ ∩ (∅ : Ã))

= (Ã ∪ B̃) ∩ ((∅ : Ã) ∪ (∅ : B̃)).

(54)

Example 3 Given is a universal set Ω and the sequence of nested subsets Ω ⊇ Λ1 ⊇ Λ2 ⊇ . . ..
The following equality is known

(Λ1\Λ2) ∪ (Λ2\Λ3) ∪ . . . = Λ1\
∞⋂
j=1

Λj . (55)

Splitting Λ1,Λ2, . . . leads, according to the previous example, to equality

(
Λ̃1 ∩ ΛC

2

)
∪
(
Λ̃2 ∩ ΛC

3

)
∪ . . . = Λ̃1 ∩

 ∞⋂
j=1

Λj

C

= Λ̃1 ∩

 ∞⋃
j=1

ΛC
j

 = Λ̃1 ∩

∞⋃
j=

(∅ : Λ̃j)

 .

(56)
Provided: ∀I

Λ̃j
is a restriction of I

Λ̃1
on corresponding Λj , i.e., Λ̃j = Λ̃1 ∩ Λj . This must be

required because equality between fuzzy subsets implies equality of membership functions of the
right and left sides of equality.
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Example 4 Given is a universal set Ω and sequence of its subsets A1 ⊆ A2 ⊆ . . . ⊆ Ω. As we
know,

∞⋃
j=1

Λj = Λ1 ∪ (Λ2\Λ1) ∪ (Λ3\Λ2) ∪ . . . (57)

Splitting Λ1,Λ2, . . . leads to the formula:

∞̃⋃
j=1

Λj =

∞⋃
j=1

Λ̃j = Λ̃1 ∪ (Λ̃2 ∩ ΛC
1 ) ∪ (Λ̃3 ∩ ΛC

2 ) ∪ . . .

= Λ̃1 ∪ (Λ̃2 ∩ (∅ : Λ̃1)) ∪ (Λ̃3 ∩ (∅ : Λ̃2)) ∪ . . .

(58)

provided I
Λ̃j
≥ I

Λ̃j+1
∧ IΛj

or Λ̃j ⊇ Λ̃j+1 ∩ Λj .

5. Some formulas related to relative pseudo-complementarity

Definition 4 The set of all possible split sets of degree Ω, P(Ω) is called the generalized degree Ω
and denoted by P̃ (Ω). The natural relation of order in the P̃ (Ω) we define as follows:

(Ã ≤ B̃)⇔ (Ã ⊆ B̃). (59)

Ordered set [P̃ (Ω); ∩, ∪] is obviously a lattice and, by virtue of isomorphism

[P̃ (Ω); ∩, ∪] ⇄ [̃I ; ∧ ,∨]

takes place.

Theorem 5 Generalized degree of universal set Ω, P̃ (Ω), is the Brewer lattice.

See the proof in Appendix A.

Further, on the basis of (43), (46) and (47) we can write

(¬Ã)D = Ã. (60)

Proof.
(¬Ã)D = (AC ∪ ÃD)D

= ((AC)C ∩ (ÃD)D) ∪ ((AC)D ∩ (ÃD)) ∪ (AC ∩ (AC)D)

= (A ∩ Ã) ∪ (∅ ∩ Ã) ∪ (AC ∩ ∅)
= A ∩ Ã) = Ã .

Similarly
¬(ÃD) = ¬(A ∩ (¬Ã)) = (¬A) ∪ (¬(¬Ã)) = AC ∪ Ã. (61)

Therefore

(Ã : ÃD) =

{
¬(ÃD), if ÃD * Ã ;

Ω if ÃD ⊆ Ã .
(62)
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Similarly

(ÃD : Ã) =

{
¬Ã, if Ã * ÃD;

Ω if Ã ⊆ ÃD.
(63)

Obviously,

(ÃD : ¬Ã) = (¬Ã⊕ (¬Ã)D)C ∨ ÃD = ΩC ∪ ÃD = ÃD. (64)

(¬Ã : ÃD) = Ω. (65)

The following formulas can be simply proved

(Ã : A) = AC ∪ Ã, (A : Ã) = Ω, (66)

(∅ : Ã) = AC , (∅ : ÃC) = A ,

(∅ : ÃD) = AC , (∅ : ¬Ã) = ∅,
(67)

(Ã : ∅) = Ω , (Ã : ∅) ∩ (∅ : Ã) = AC , (68)

(∅ : (∅ : Ã)) = A, (69)

(∅ : Ã) = (∅ : (∅ : Ã)) = Ω, (70)

(∅ : Ã) ∩ (∅ : (∅ : Ã)) = ∅, (71)

(B̃ : Ã)⊕ (B̃ : Ã)D = AC ∪B. (72)

Let us prove the last equality. According to (27) and (47) we can write: ∀ω ∈ Ω

I(B̃:Ã)D(ω) =

{
(IAC ∨ IB̃)

D(ω), IÃ(ω) > IB̃(ω) ;

0, IÃ(ω) ≤ IB̃(ω) ;

=

{
((I(AC)D ∧ IBD) ∨ (I(AC)C ∧ IB̃D) ∨ (IBC ∧ I(AC)D))(ω), IÃ(ω) > IB̃(ω);

0, IÃ(ω) ≤ IB̃(ω);

=

{
((I∅ ∧ IB̃D) ∨ (IA ∧ IB̃D) ∨ (IBC ∧ I∅))(ω), IÃ(ω) > IB̃(ω);

0, IÃ(ω) ≤ IB̃(ω);

=

{
(IA ∧ IB̃D)(ω), IÃ(ω) > IB̃(ω) ;

0, IÃ(ω) ≤ IB̃(ω) ;

and

(I(B̃:Ã) + I(B̃:Ã)D)(ω) =

{
(IAC ∨ IB̃ )(ω) + (IA ∧ IB̃D)(ω) , IÃ(ω) > IB̃(ω) ;

1, IÃ(ω) ≤ IB̃(ω) ;

= IAC (ω) ∨ IB(ω) ⇄ AC ∨B.

Similarly
(Ã : B̃)⊕ (Ã : B̃)D = A ∪BC . (73)

Based on (72) and (73), we can write:

Ω = [(Ã : B̃)⊕ (Ã : B)D] ∪ [(B̃ : Ã)⊕ (B̃ : Ã)D] . (74)

Also, it is obvious that for ∀Ã ∈ P̃ (Ω) we can write

Ω = (ÃD : Ã)⊕ Ã = (Ã : ÃD)⊕ ÃD. (75)
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6. Some properties of the set splitting operation

Based on (29), a more general expression Ã⊕ B̃ can be obtained, which will make sense provided

B̃ ⊆ ¬Ã, or Ã ⊆ ¬B̃.

We can get the existence conditions for an expression Ã ⊕ B̃ ⊕ C̃,etc. Considering that such
conditions are feasible for the following expressions, it is easy to prove that

(i) Ã⊕ B̃ = B̃ ⊕ Ã,

(ii) Ã⊕ (B̃ ⊕ C̃) = (Ã⊕ B̃)⊕ C̃,

(iii) (Ã⊕ ÃD) ∩ (B̃ ⊕ B̃D) = (Ã ∩B)⊕ (Ã ∩B)D

= (Ã ∩ B̃)⊕ [(A ∩ B̃D) ∪ (ÃD ∩B)],

(iv) (Ã⊕ ÃD) ∪ (B̃ ⊕ B̃D) = (Ã ∪B)⊕ (Ã ∪B)D

= (Ã ∪ B̃)⊕ [(ÃD ∩ B̃D) ∪ (AC ∩ B̃D) ∪ (ÃD ∩BC)],

(v) Ã⊕ (B̃ ∩ C̃) = (Ã⊕ B̃) ∩ (Ã⊕ C̃),

(vi) Ã⊕ (B̃ ∪ C̃) = (Ã⊕ B̃) ∪ (Ã⊕ C̃).

Let us prove the last two formulas

(v) Ã⊕ (B̃ ∩ C̃) ⇄ IÃ + (IB̃ ∧ IC̃) = (IÃ + IB̃) ∧ (IÃ + IC̃) ⇄ (Ã⊕ B̃) ∩ (Ã⊕ C̃);

(vi) Ã⊕ (B̃ ∪ C̃) ⇄ IÃ + (IB̃ ∨ IC̃) = (IÃ + IB̃) ∨ (IÃ + IC̃) ⇄ (Ã⊕ B̃) ∪ (Ã⊕ C̃).

Note that operations ∪ and ∩ are nondistributiveregarding ⊕, i.e.

Ã ∪ (B̃ ⊕ C̃) ̸= (Ã ∪ B̃)⊕ (Ã ∪ C̃);

Ã ∩ (B̃ ⊕ C̃) ̸= (Ã ∩ B̃)⊕ (Ã ∩ C̃).

Definition 5 A fuzzy point is an object defined by the splitting of an element of a universal set Ω
(an ordinary point ω):

ω0 = ω̃0 ⊕ ω̃0
D. (76)

I.e.

ω̃0 ⇄ I{ω̃0}(ω) =

{
a, ω = ω0

0, ω ̸= ω0
; ω0 ∈ Ω , a ∈ [0, 1]. (77)

Theorem 6 LetΩ be a universal set, ω0 ∈ Ω, and ω̃0 be corresponding split point, then the splitting
of the universal set determined by the splitting of the point ω0, will be a relative pseudo-completion
ω0 of ω̃0

D in ω̃0

Ω̃ = ω̃0 : ω̃0
D. (78)
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Proof The proof is elementary seen from the following transformations

IΩ̃ = I{ω̃0} ∨ I{ω0}C = I¬{ω̃0}D
−→← ¬ω̃0

D = ω̃0 : ω̃0
D.

Remark 2 According to (60) we have:

Ω̃D = (¬ω̃0
D)D = ω̃0

D, (ω̃0 : ω̃0
D)⊕ ω̃0

D = Ω. (79)

7. ON SOME PROPERTIES OF THE MAIN IDEALS OF THE LATTICE

Consider the lattice Ĩ. As we can see, the pseudo-completion of an arbitrary element Ã of this
lattice is an element of the Boolean sublattice I in Ĩ, designated by AC . The set of all Ã with
pseudo-completion AC , obviously, form an ideal that we denote by J̈A . For the set A = (∅ : ÃC)
the corresponding ideal will be J̈AC . Denote by J̈ the set of all such ideals and let us order this set
like this:

A ⊆ B ⇔ J̈A ≤ J̈B. (80)

Let us introduce lattice operations

J̈A ∧ J̈B = J̈A∩B, (81)
J̈A ∨ J̈B = J̈A∪B. (82)

The set J̈ ordered by the above-mentioned way with operations (81) and (82) is a lattice. Obviously,
there is valid the following.

Theorem 7 The lattice J̈ is isomorphic to Boolean lattice I.

Proof It is a correspondence like this J̈A ⇄ AC . Therefore, due to (27) and (28) there are valid
relationships

J̈A ≤ J̈B ⇄ AC ≥ BC , (83)
J̈A∪B = J̈A ∨ J̈B ⇄ AC ∩BC , (84)
J̈A∩B = J̈A ∧ J̈B ⇄ AC ∪BC . (85)

J̈A is a main ideal in Ĩ : Ĩ(A) = J̈A.

Theorem 8 If J̈A is a main ideal in Ĩ , generated by the elementA ,then mapping on X̃ : Q(X̃) =

X̃ ∨A is a ∨-endomorphism with a kernel J̈A [25].
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Proof It is easy to show that

Q(X̃ ∨ Ỹ ) = (X̃ ∨A) ∨ (Ỹ ∨A) = Q(X̃) ∨Q(Ỹ )

Further, if z̃ ∈ J̈A, z̃ ≤ A ⇒ z̃ ∨ A = A ⇒ Q(z̃) = A. For ∀X̃ ∈ Ĩ there holds Q(X̃) =

X̃ ∨ A ≥ A, so if z̃ ∈ J̈A, then Q(z̃) ≤ Q(X̃). This means that A is the least element in ImQ.
Thus J̈A = ker Q is a kernel of ∨-endomorphism.

8. CONCLUSION

The article deals with the operation of splitting a crisp indicator in the dual fuzzy sets. The repre-
sentations of the operations of union, intersection, Cartesian product and other operations on split
indicators are also given. It is studied the lattice of split elements of the Boolean lattice of indicators
i, where it is proved that the lattice of all split elements of this lattice ĩ is a Brewer lattice. A number
of facts are given on the properties of this lattice. Splitting operation of a crisp set is defined, which
is equivalent to splitting operation of its indicator. The main properties of this operation are given,
with some proofs. The concept of the generalized degree of the universe is defined, which is the
lattice of the elements obtained by splitting all the subsets of the universe. It is proved that this lattice
represents a Brewer lattice. Some formulas for conditional pseudocompletion of the element of this
lattice are considered. Some properties of the operation of splitting sets are given. The ideal of split
elements of ĩ and their pseudocompletions is discussed. It is argued that this lattice is equivalent
to a Boolean lattice i. A simple example of MADM is presented for illustration of the application
of splitting operation.Future studies, aimed at multi-criteria decision-making problems, will use the
results presented in this article. It is also planned to generalize the splitting operation from the fuzzy
sets of Zadeh for the dual q-rung orthopair fuzzy sets.
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Appendix A.

Proof of the Theorem 2.

Proof A Brewer lattice is a lattice l in which, for any given elements a and b a set of all x ∈ l such
that a∧ x ≤ b, has the largest element (b : a), called a relative pseudo-complement of a in b (in the
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Brewer lattice with 0 the element (0 : a) is called a pseudo-complement for a and denoted by a∗)
[2].

Now, let IÃ, IB̃ ∈ Ĩ. We have to show that the set{
IX̃
}
=
{
IX̃ : IÃ ∧ IX̃ ≤ IB̃, IX̃ ∈ Ĩ

}
(A-1)

Has the largest element (IB̃ : IÃ). On the basis of lattice “inequality” in (A-1) for ∀ω ∈ Ω the
following inequalities are valid:

IÃ(ω) ∧ IX̃(ω) ≤ IB̃(ω) .

Let us prove that, ∀ω ∈ Ω

(IB̃ : IÃ)(ω) =

{
1, IÃ(ω) ≤ IB̃(ω)

IAC (ω) ∨ IB̃(ω), IÃ(ω) > IB̃(ω)
(A-2)

First, let us show that (IB̃ : IÃ)(ω) ∈
{
IX̃
}
. In fact, ∀ω ∈ Ω

IÃ(ω) ∧

{
1, IÃ(ω) ≤ IB̃(ω)

IAC (ω) ∨ IB̃(ω), IÃ(ω) > IB̃(ω)
=

{
IÃ(ω), IÃ(ω) ≤ IB̃(ω)

IAC (ω) ∧ IB̃(ω), IÃ(ω) > IB̃(ω).

To show that (A-2) is the largest element of the subset
{
IX̃
}
, note that if Iỹ ∈

{
IX̃
}
, then Iỹ∨IAC ∈{

IX̃
}
, and any element of

{
IX̃
}
can be taken as Iỹ.

Consider the intersection (A-2) with (Iỹ ∨ IAC ) at each point of Ω. We have ∀ω ∈ Ω

(Iỹ(ω) ∨ IAC (ω)) =

{
1, IÃ(ω) ≤ IB̃(ω)

IAC (ω) ∨ IB̃(ω), IÃ(ω) > IB̃(ω)
.

Clear that when IÃ(ω) ≤ IB̃(ω), then

(Iỹ ∨ IAC )(ω) ≤ (IB̃ : IÃ)(ω).

In the opposite case, if we consider elemental inequality (Iỹ(ω) ∨ IAC (ω)) ∧ IB̃(ω) ≤ IB̃(ω), we
will have:

(Iỹ(ω) ∨ IAC (ω)) ∧ (IAC (ω) ∨ IB̃(ω))

= ((Iỹ(ω) ∨ IAC (ω)) ∧ IAC (ω)) ∨ ((Iỹ(ω) ∨ IAC (ω)) ∧ IB̃(ω))

= IAC (ω) ∨ ((Iỹ(ω) ∨ IAC (ω)) ∧ IB̃(ω))

≤ IAC (ω) ∨ IB̃(ω).

Finally, ∀ω ∈ Ω and ∀IX̃ ∈
{
IX̃
}

IX̃(ω) ≤ (IB̃ : IÃ)(ω) =

{
1, IÃ(ω) ≤ IB̃(ω);

IAC (ω) ∨ IB̃(ω), IÃ(ω) > IB̃(ω).

Theorem is proved.
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Proof of the Theorem 3.

Proof
(i) IÃ ≤ IB̃ ⇔ (IÃ(ω) ≤ IB̃(ω) , ∀ω ∈ Ω)⇔⇔ (IBC (ω) ≤ IAC (ω))⇔ (I∅ : IB̃) ≤ (I∅ : IÃ).

(ii) (I∅ : (I∅ : IÃ)) = (I∅ : IAC ) = IA.

From inequality IÃ ≤ IA is elementarily provable.

(iii) (I∅ : (I∅ : (I∅ : IÃ))) = IAC = (I∅ : IÃ) .

(iv) (I∅ : (IÃ ∨ IB̃)) = ((IÃ ∨ IB̃) + (IÃ ∨ IB̃)
D)C

= (I
Ã∪B + I

Ã∪B
D)C = I(A∪B)C = IAC∩BC = IAC ∧ IBC = (I∅ : IÃ) ∧ (I∅ : IB̃) .

(v) (I∅ : (IÃ ∧ IB̃)) = ((IÃ ∧ IB̃) + (IÃ ∧ IB̃)
D)C

= (I
Ã∩B + I

Ã∩B
D)C = I(A∩B)C = IAC∪BC = IAC ∨ IBC = (I∅ : IÃ) ∨ (I∅ : IB̃) .

Proof of the Theorem 4.

Proof For ∀ω ∈ Ω we have

(i) (IÃ : IB̃)(ω) ∧ IÃ(ω) =

({
IBC (ω) ∨ IÃ(ω), IB̃(ω) > IÃ(ω)

1, IB̃(ω) ≤ IÃ(ω)

)
∧ IÃ(ω)

=

{
(IBC (ω) ∨ IÃ(ω)) ∧ IÃ(ω), IB̃(ω) > IÃ(ω)

1 ∧ IÃ(ω), IB̃(ω) ≤ IÃ(ω)

= IÃ(ω), ∀ω ∈ Ω.

(ii) ((IÃ : IB̃)(ω) ∧ IB̃(ω)) =

({
IBC (ω) ∨ IÃ(ω), IB̃(ω) > IÃ(ω)

1, IB̃(ω) ≤ IÃ(ω)

)
∧ IB̃(ω)

=

{
(IBC (ω) ∨ IÃ(ω) ∧ IB̃(ω), IB̃(ω) > IÃ(ω)

1 ∧ IB̃(ω), IB̃(ω) ≤ IÃ(ω)

= IÃ(ω) ∧ IB̃(ω) , ∀ω ∈ Ω.

(iii) ((IÃ ∧ IB̃)(ω) : IC̃(ω)) =

{
IC̃(ω) ∨ (IAC (ω) ∧ IB̃(ω), ) , IC̃(ω) > (IÃ(ω) ∧ IB̃(ω));

1 , IC̃(ω) ≤ (IÃ(ω) ∧ IB̃(ω));

=


(IC̃(ω) ∨ IAC (ω))

∧(IC̃(ω) ∨ IB̃(ω)) ,
IC̃(ω) > (IÃ(ω) ∧ IB̃(ω));

1 , IC̃(ω) ≤ (IÃ(ω) ∧ IB̃(ω)).

Because IC̃(ω) ≤ (IÃ(ω) ∧ IB̃(ω)) , then IC̃(ω) ≤ IÃ(ω) , IB̃(ω). Therefore, for ∀ω ∈ Ω we
have

((IÃ ∧ IB̃) : IC̃)(ω) = (IÃ : IC̃)(ω) ∧ (IB̃ : IC̃)(ω).
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(iv) (IÃ : (IB̃ ∨ IC̃))(ω) =


((IB̃(ω) ∨ IC̃(ω) + (IB̃(ω)

∨IC̃(ω)
D)C ∨ IÃ(ω),

IB̃(ω) ∨ IC̃(ω) > IÃ(ω);

1, IB̃(ω) ∨ IC̃(ω) ≤ IÃ(ω);

=

{
(I

B̃∪C(ω) + I
B̃∪C

D(ω))C ∨ IÃ(ω), IB̃(ω) ∨ IC̃(ω) > IÃ(ω) ;

1, IB̃(ω) ∨ IC̃(ω) ≤ IÃ(ω).

Since IB̃(ω) ∨ IC̃(ω) ≤ IÃ(ω), then IB̃(ω), IC̃(ω) ≤ IÃ(ω) and for ∀ω ∈ Ω

(IÃ : (IB̃ ∨ IC̃))(ω) =

{
(IBC (ω) ∧ ICC (ω)) ∨ IÃ(ω), IB̃(ω) ∨ IC̃(ω) > IÃ(ω);

1, IB̃(ω) ∨ IC̃(ω) ≤ IÃ(ω);

=

{
(IBC (ω) ∨ I

Ã
(ω)) ∧ ICC (ω) ∨ IÃ(ω), IB̃(ω) ∨ IC̃(ω) > IÃ(ω);

1, IB̃(ω) ∨ IC̃(ω) ≤ IÃ(ω);

= (IÃ : IB̃)(ω) ∧ (IÃ : IC̃)(ω) .

Theorem is proved.

Proof of the Theorem 5.

Proof Let for ∀ Ã ∈ P̃ (Ω) a fuzzy subset Ã> 1

2
⊆ Ã such that, its membership function is > 1

2 and

for Ã≤ 1

2
⊆ Ã is less or equal to 1

2

(
Ã> 1

2
∪ Ã≤ 1

2
= Ã

)
, then

(ÃD : Ã) = AC
> 1

2

∪ ÃD. (A-3)

In fact, according to (27)

(ÃD : Ã) ⇄ (IÃD : IÃ) = (IÃD : (I
Ã> 1

2

∪ I
Ã≤ 1

2

))

= (IÃD : I
Ã> 1

2

) ∧ (IÃD : I
Ã≤ 1

2

)

= (IAC

> 1
2

∨ IÃD) ∧ IΩ = IAC

> 1
2

∨ IAD .

Reasoning similarly, we get
(Ã : ÃD) = AC

> 1

2

∪ Ã. (A-4)

Since
¬Ã = AC ∪ ÃD (A-5)

then
ÃD = A ∩ (¬Ã). (A-6)

Theorem is proved.
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