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Abstract
The tools and technology that are currently used to analyze chemical compound structures
that identify polymer types inmicroplastics are not well-calibrated for environmentallyweath-
ered microplastics. Microplastics that have been degraded by environmental weathering
factors can offer less analytic certainty than samples of microplastics that have not been
exposed to weathering processes. Machine learning tools and techniques allow us to better
calibrate the research tools for certainty in microplastics analysis. In this paper, we inves-
tigate whether the Raman shift values are distinct enough such that well studied machine
learning (ML) algorithms can learn to identify polymer types using a relatively small amount
of labeled input data when the samples have not been impacted by environmental degradation.
Several ML models were trained on a well-known repository, Spectral Libraries of Plastic
Particles (SLOPP), that contain Raman shift and intensity results for a range of plastic parti-
cles, then tested on environmentally aged plastic particles (SloPP-E) consisting of 22 polymer
types. After extensive preprocessing and augmentation, the trained random forest model was
then tested on the SloPP-E dataset resulting in an improvement in classification accuracy of
93.81% from 89%.
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1. INTRODUCTION

Plastic pollution is exclusively the result of anthropogenic activities, with the majority of plastic
entering the environment through land-based activities but ending up far from their source, having
travelled though atmospheric and riverine pathways and degrading through multiple processes [1].
The durability and strength of plastics that make them suitable for a broad range of applications are
also what cause them to disperse easily and have led to them becoming a global pollution problem.
The primary reason they pose such a threat to the environment is their resistance to degradation,
allowing them to persist for hundreds or thousands of years. However, their exposure to a variety
of factors will result in them breaking down from macroplastics to microplastics [2].

Microplastics (less than 5mm) are composed of various polymers and include a broad array of
chemical additives [3]. It is understood that microplastics can decay at different rates depending
on climate conditions, and that different stages of decay pose differing levels of toxicity to plant
and animal life [4]. Thus, the chemical diversity of microplastics is an important consideration.
The impacts of microplastics range from those on marine, freshwater, and terrestrial ecosystems [1],
on human health through ingestion of beverages and contamination in food and food packaging [5],
and on microorganisms through uptake by zooplankton in freshwater ecosystems or interference
with nutrient production and cycling in aquatic ecosystems. Finally, consumption of microplastics
by humans through the food chain raises concerns about possible health risks and effects on the
human body [2].

The two most promising techniques for microplastics analysis, are Raman and Fourier transform
infrared (FTIR) spectroscopy [6]. The preferred method for identifying microplastics is Raman
spectroscopy which is an indispensable tool for the analysis of very small microplastics less than
20𝜇m [7]. This is a vibrational spectroscopy technique based on the inelastic scattering of light [8, 9].
When laser light is inelastically scattered from a chemical, the inelastic energy, which indicates an
energy difference, represents a change of the vibrational energy level in the bond or bonds in a
molecule.

A Raman spectrum of the sample is created by plotting the Raman shift against the light frequency1.
For example, in Fig 1, the y-axis gives the intensity of the scattered light, and the x-axis gives the
energy of light. The specific type of material is marked with peaks in Raman spectroscopy. One
of the primary advantages of Raman spectroscopy is that even after exposure to ultraviolet (UV)
light, the Raman spectra of microplastics are not so altered that it no longer provides a polymer
signal. This is significant as microplastics typically experience multiple forms of degradation with
the majority of microplastics samples being degraded [10].

Machine learning (ML) algorithms such as Decision Trees (DT), Random Forest (RF), Support
Vector Machines (SVM), K-Neighbour methods (KNN), Artificial Neural Networks (ANN) have
been successfully applied to Raman spectra data in diverse areas of science. In [11], ANN and
KNN methods were used to predict the concentration of cocaine using Raman spectroscopy. The

1 https://www.utsc.utoronto.ca/~traceslab/PDFs/raman_understanding.pdf
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authors [12], use Raman spectroscopy to detect chemical changes in melanoma tissue of patients
and achieve 85% (sensitivity) and 99% (specificity) results with ANNs. In [13], several well-
knownML algorithms were applied to determine the mine of origin and extraction depth of samples
by finding Raman spectral differences for variscite (phosphate mineral) specimens from the Gavà
mining complex where the SVM classifier gave the best result of almost 90% classification accuracy.
In [14], the SVM model was able to achieve a diagnostic accuracy of 92% for tuberculosis patients
using Raman spectra of blood sera. RF classifier was used in the analysis of spectral information of
various cultural heritage materials by [15]. The authors [16], classify seven types of oils using
Raman spectroscopy: sunflower, sesame, hemp, walnut, linseed (flaxseed), sea buckthorn and
pumpkin seeds where a subspace KNN ensemble classifier gave the best classification accuracy of
88.9%. In [17], the authors explore association between Raman spectroscopy and machine learning
to differentiate fruit distillate samples (alcoholic beverage) to determine trademark, geographical
and botanical origin. The best geographical classification of the fruit distillates was obtained with
the ensemble (subspace KNN) method resulting in an accuracy of 90.9% for 30 samples. In [18],
ANN and SVM algorithms were used to diagnose biochemical composition of biological fluids
of patients with Alzheimer’s disease based on near infrared (NIR) Raman spectroscopy with 84%
sensitivity and specificity values. The authors [19], present deep learning methods to extract and an-
alyze chemical information in big and complex datasets derived from Raman and surface-enhanced
Raman scattering (SERS) techniques. In [20], 230 Raman spectra samples of high dimensional
solvent and solvent mixtures (chemicals) were classified with deep neural networks using a locally
connected architecture, resulting in amean accuracy of 96.0%. In [21], Raman spectra of oral tongue
squamous cell carcinoma and para-carcinoma tissues of 24 patients were analyzed. A convolutional
neural network model was used to extract features, which were then input to an SVM classifier
resulting in a 99.96% accuracy. AlexNet deep learning model was used to classify chronic renal
failure using serum Raman spectra of 100 patients with an accuracy of 95.22% [22].

In [23], six types of common household plastics using Raman spectroscopy were evaluated to
demonstrate the potential of machine learning methods such as principle component analysis, KNN
as well as regression models for classification and prediction. In [24], hyperspectral imaging was
used to detect micro plastic contamination in soils. Classification precision of 86% for polymers con-
tainining microplastics particles of size between 1-5 mm and about 99% precision for microplastics
particles of size between 0.5-1 mm were obtained. In [25] laser-induced breakdown spectroscopy
was used to create plastic samples containing different additives such as flame retardants. Principle
component analysis (PCA) and Linear Discriminant Analysis (LDA) were used to discriminate
11 different types of additives with LDA achieving almost 100% accuracy. In [26], 4000 images
belonging to the five categories of plastic resin codes from a public database were classified using
convolutional neural networks with an accuracy of 99.79%. In [27], micro Fourier Transform
Infrared (𝜇-FTIR) hyper-spectral imaging with Partial least squares discriminant analysis (PLS-DA)
and soft independent modelling of class analogy (SIMCA) which is based on PCA, were used to
classify nine of the most common polymers in microplastics found on seabed sediment samples.
A review of polymer informatics is presented in [28]. In [29], PCA and clustering with K-means
on short wave infrared hyperspectral data prepared using reflection imaging with a hyperspectral
camera was used to analyze and classify 13 commercially available plastics.

Our work differs from the more recent work where either hyperspectral imaging, digital images
or laser-induced breakdown spectroscopy of plastics were used with machine learning models in-
cluding deep learning models. The datasets used were either prepared by the authors or included
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large image repositories suitable for deep learning. On the other hand, Raman spectroscopy data
typically consist of approximately 1,000 to 3,000 data points. It is difficult and expensive to obtain
the spectroscopy data, and only a limited amount of data is available online. Additionally, each
sample might contain not one type of microplastic, but rather a combination of materials. To this
end, in our work, several machine learningmodels were trained on awell-known repository, Spectral
Libraries of Plastic Particles (SLOPP) containing 148 samples and 158 samples from Mendeley 2.
The SLOPP library contains Raman shift and intensity results of Raman spectroscopy laboratory
analyses conducted at the Rochman Lab 3 in the Department of Ecology and Evolutionary Biology at
the University of Toronto for a range of plastic particles. This library also includes environmentally
aged plastic particles (SloPP-E) containing 97 samples.

The SLOPP/SLOPP-E is a single dataset with the only distinction being the categorization as weath-
ered or not-weathered respectively. The dataset was collected in an otherwise uniform process with
the specific purpose of having comparable datasets. A combined dataset of SLoPP and Mendeley
(second dataset) was used as our training dataset, since the standard Mendeley data shared similar
characteristics with SLOPP (non-weathered) data. Although the peaks and valleys of the SLOPP and
Mendeley datasets did differ due to the non-identical collection, we were able to make comparisons
on a rate of change basis nonetheless. SLoPP-E (weathered) was used as the testing dataset. After
extensive preprocessing and augmentation, the trained random forest model was then tested on the
SloPP-E dataset resulting in an improvement in classification accuracy of 93.81% from 89%. This
work contributes to the understanding of environmental polymers by validating themachine learning
methods that improve the predictive capability of Raman spectroscopy data analysis.

Our paper is organized as follows: In section 2, we give a description of the open source spec-
troscopy datasets considered in this work. In section 3, we present a detailed discussion of the
preprocessing and augmentation techniques used in this research for generating training and testing
examples. In section 4, we give an in-depth analysis of the classification results of our final model
followed by concluding remarks in section 5.

2. MATERIALS- SPECTROSCOPY DATA

A Raman spectrum can provide molecular bond information on a particular substance and may
be described as a “fingerprint” of the substance due to its uniqueness [30]. Raman spectra are a
plot of scattered intensity as a function of the energy difference between the incident and scattered
photons and are obtained by pointing a monochromatic laser beam at a sample [31]. The resultant
spectra are characterized by shifts in wave numbers (inverse of wavelength in 𝑐𝑚−1 ) from the
incident frequency. The frequency difference between incident and Raman-scattered light is termed
the Raman shift, which is unique for individual molecules. For this research, the following datasets
have been used SLoPP, SLoPP-E, Mendeley. A combined dataset of SLoPP andMendeley was used
as our training dataset, while SLoPP-E was used as the testing dataset.

SLOPP: SLoPP is a spectral library of microplastic particles with 148 samples, having different
polymer types (shown in TABLE 1), colours and morphologies. Examples of colours are

2 https://data.mendeley.com/datasets/kpygrf9fg6/1
3 https://rochmanlab.wordpress.com/spectral-libraries-for-microplastics-research/
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turqoise, orange, green, white, grey, black, light brown and clear. Examples of morphologies
include: fragments, sphere, film, foam, and fiber. SLoPP was collected in the range of 100-
3500 𝑐𝑚−1 and was created to include commonly used plastics.
FIGURE 1, illustrates the Raman spectra for one type of polymer (polypropylene). The y-axis
shows the intensity of the scattered light, and the x-axis shows the energy (frequency) of light.
Different colours represent different samples in the dataset. It can be observed, that the most
distinguishing feature of the Raman spectroscopy is peaks on different energies of the light.

Figure 1: Raman spectra of Polypropylene from the SLoPP dataset.

SLOPP-E: SLoPP-E dataset is similar to the SLoPP dataset, however, it includes samples exposed
to a variety of environmental conditions (e.g., some samples have undergone some chemical
degradation, ageing). The microplastics in this library SLoPP-E include environmental sam-
ples obtained across a range of matrices, geographies, and time. FIGURE 2, illustrates the
Raman spectra for the same type of polymer (polypropylene) as the one shown in FIGURE 1.
Different colours represent different samples in the dataset. It can be observed that these two
datasets share the same values on the x-axis (frequency) and similar intensities (peaks on the
y-axis) for the same polymer type.

Figure 2: Raman spectra of Polypropylene from the SLoPP-E dataset.

TABLE 1, shows the distribution of polymers types for SLoPP and SLoPP-E. It can seen that some
types are either missing in training (SLoPP) or testing (SLoPP-E) datasets. However, the training
dataset includes many more types that are missing compared to the testing dataset.
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Polymer Types SLoPP samples SLoPP-E samples
Acrylic 10 3
Acrylonitrile Butadiene Styrene 10 1
Cellulose Acetate 4 3
Cotton 16 -
Polyamide 7 7
Polycarbonate 7 2
Polyester 10 12
Polyethylene 24 26
Polyethylene Terephthalate 9 1
Polyethylene Vinyl Acetate 5 -
Polymethyl Methacrylate 1 3
Polypropylene 17 21
Polystyrene 11 9
Polyurethane 6 6
Polyvinyl Chloride 11 3
Dyed Cellulose - 5
Polybutylene Terephthalate - 1
Polyethylene Terephthalate-co-Polycarbonate - 1
Polyethylene-co-Polypropylene - 3
Polystyrene-co-Polyvinyl Chloride - 1
Polysulfone - 1
Rubber - 4

Table 1: Data Distribution for SLoPP and SLoPP-E.

Mendeley: This dataset has two variations of microplastics: standard and weathered. The stan-
dard data is similar to SLoPP and the weathered data is similar to SLoPP-E (by description),
subjected to environmental conditions.

Figure 3: Raman spectra of Polypropylene from the Mendeley dataset.

A plot of the Raman spectroscopy for polypropylene is shown in FIGURE 3. From this plot,
one can observe the following : i) some samples in the Mendeley dataset have a wave-like
structure, and ii) the peaks (intensities of scattered light) are not as sharp and separated as
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in the SLoPP or SLoPP-E datasets. TABLE 2, shows the data distribution for Mendeley
dataset. The majority of samples in this dataset belong to two polymer types: polypropylene
and polyethylene and can be used in the training dataset, as they are also present in the SLoPP
dataset.

Polymer Types Mendeley samples
Not detected 8
Acrylonitrile Butadiene Styrene 1
Nitrocellulose 1
Polyamine (nylon) 6
Polycarbonate 2
Polyethylene 74
Polyester 16
Polypropylene 54
Polystyrene (maybe) 2
Polyvinyl chloride 9

Table 2: Data Distribution for Mendeley.

2.1 Final Dataset

The final dataset used in our experiments is shown in TABLE 3. Note, that only the polymer types
that are present in SLoPP are used. The majority of samples come from SLoPP, however, Mendeley
contains a lot of samples for the polyester, polyethylene and polypropylene polymer types. The test
dataset consists of only SLoPP-E, which was reduced to match the classes (SLOPP polymer types)
present in the training set. 16 samples from 7 different types of plastic have been removed resulting
in a combined dataset of 306 training samples and 97 testing samples.

3. METHODS: FEATURE ENGINEERING AND PREPROCESSING

As has been discussed in the previous section, different polymer types can be identified by the
location of peaks on the x-axis (energy). Before this data can be used for classification learning,
feature engineering which includes data transformation as well as preprocessing techniques such as
normalization and discretization have been used. These techniques are described below.

3.1 Normalization

Here we discuss scaling methods for normalizing both the intensity (y-axis) and energy (x-axis)
feature values since there are multiple problems with the feature values such as: varying ranges,
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Polymer Types SLoPP SLoPP-E Mendeley
Acrylic 10 3 -
Acrylonitrile Butadiene Styrene 10 1 1
Cellulose Acetate 4 3 -
Cotton 16 - -
Polyamide 7 7 -
Polycarbonate 7 2 2
Polyester 10 12 16
Polyethylene 24 26 74
Polyethylene Terephthalate 9 1 -
Polyethylene Vinyl Acetate 5 - -
Polymethyl Methacrylate 1 3 -
Polypropylene 17 21 54
Polystyrene 11 9 2
Polyurethane 6 6 -
Polyvinyl Chloride 11 3 9

Table 3: Final dataset (SLoPP, SLoPP-E, Mendeley).

varying step values, integer vs. real values as well negative values. Algorithm 1 gives the pseudo-
code for scaling the energy values.

• Energy values: Each sample in the dataset has a different x-axis range (i.e., one sample might
have y-axis values between 100 and 1200 on the x-axis and another one between 300 and
3000). Furthermore, each sample’s range between individual points on the x-axis is different
as well (i.e., one sample can have a step value of 2 and another sample with a step value of
3). Therefore, scaling of the x-axis should be performed, where all values would be mapped
to the corresponding points. Additionally, x-axis values are continuous values (ex: real value
of 101.23), therefore, x-axis values should be mapped to integer values.
Scaling works as follows: firstly, as each sample has a different x-axis range, these values
are mapped to the same range, by finding the minimum and maximum value of x for all
samples (shown as parameter min_range, max_range in Algorithm 1). In the case of the
combined dataset, these parameter values are set to 0 and 3500 respectively. Then the values
are populated by either the first value if the values occur at the beginning of the dataset, or by
the last value if the values occur at the end. For example, if a sample has values on the x-axis
ranging between 100 and 3000, then the values between 0-99 are populated with 100, and the
values between 3001-3500 are populated with the value 3000.
Secondly, as samples have a different step between each value, the gaps between these values
are populated with the value which is at the beginning of a gap (i.e., if the x-values of two
samples are 100 and 103, then all x-values having either 101 and 102 are replaced with value
100). As a result, this function produces 3501 points (3500 - 0 + 1), which are populated using
the information from the original sample.

• Intensity values: Some samples in the SLoPP-E test set have negative values for the intensity
(y-axis). Hence, all values have been scaled by adding a constant factor of one unit, which
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Algorithm 1 Scaling(Dataset, min_range, max_range)
1: 𝑠𝑐𝑎𝑙𝑒𝑑_𝑑𝑎𝑡𝑎 ← 𝑑𝑖𝑐𝑡 ()
2: for 𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑡𝑦𝑝𝑒, 𝑖𝑑𝑥𝑠 in 𝐷𝑎𝑡𝑎𝑠𝑒𝑡.𝑖𝑡𝑒𝑚𝑠() do
3: 𝑠𝑐𝑎𝑙𝑒𝑑_𝑑𝑎𝑡𝑎[𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑡𝑦𝑝𝑒] ← []
4: for 𝑖𝑑𝑥 in 𝑖𝑑𝑥𝑠 do
5: 𝑐ℎ𝑎𝑛𝑔𝑒𝑑_𝑑𝑎𝑡𝑎 ← 𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒({

′𝑥′ : 𝑟𝑎𝑛𝑔𝑒(𝑚𝑖𝑛_𝑟𝑎𝑛𝑔𝑒, 𝑚𝑎𝑥_𝑟𝑎𝑛𝑔𝑒 + 1),
′𝑦′ : [0.0] ∗ (𝑚𝑎𝑥_𝑟𝑎𝑛𝑔𝑒 + 1)})

6: 𝑙𝑎𝑠𝑡_𝑖𝑑𝑥 ← −1
7: for 𝑖𝑛𝑑𝑒𝑥, 𝑝𝑜𝑖𝑛𝑡 in 𝑖𝑑𝑥.𝑖𝑡𝑒𝑟𝑟𝑜𝑤𝑠() do
8: 𝑖𝑑𝑥_𝑜 𝑓 _𝑒𝑙 ← 𝑖𝑛𝑡 (𝑝𝑜𝑖𝑛𝑡 [′𝑥′])
9: if 𝑖𝑑𝑥_𝑜 𝑓 _𝑒𝑙 > 𝑚𝑎𝑥_𝑟𝑎𝑛𝑔𝑒 then
10: break
11: if 𝑙𝑎𝑠𝑡_𝑖𝑑𝑥 != −1 then
12: for 𝑖 in 𝑟𝑎𝑛𝑔𝑒(𝑙𝑎𝑠𝑡_𝑖𝑑𝑥 + 1, 𝑖𝑑𝑥_𝑜 𝑓 _𝑒𝑙) do
13: 𝑐ℎ𝑎𝑛𝑔𝑒𝑑_𝑑𝑎𝑡𝑎.𝑎𝑡 [𝑖, ′𝑦′] ← 𝑐ℎ𝑎𝑛𝑔𝑒𝑑_𝑑𝑎𝑡𝑎.𝑎𝑡 [𝑙𝑎𝑠𝑡_𝑖𝑑𝑥, ′𝑦′]
14: else
15: for 𝑖 in 𝑟𝑎𝑛𝑔𝑒(𝑖𝑑𝑥_𝑜 𝑓 _𝑒𝑙) do
16: 𝑐ℎ𝑎𝑛𝑔𝑒𝑑_𝑑𝑎𝑡𝑎.𝑎𝑡 [𝑖, ′𝑦′] ← 𝑝𝑜𝑖𝑛𝑡 [′𝑦′]
17: 𝑐ℎ𝑎𝑛𝑔𝑒𝑑_𝑑𝑎𝑡𝑎.𝑎𝑡 [𝑖𝑑𝑥_𝑜 𝑓 _𝑒𝑙, ′𝑦′] ← 𝑝𝑜𝑖𝑛𝑡 [′𝑦′]
18: 𝑙𝑎𝑠𝑡_𝑖𝑑𝑥 ← 𝑖𝑑𝑥_𝑜 𝑓 _𝑒𝑙
19: for 𝑖 in 𝑟𝑎𝑛𝑔𝑒(𝑙𝑎𝑠𝑡_𝑖𝑑𝑥 + 1, 𝑚𝑎𝑥_𝑟𝑎𝑛𝑔𝑒 + 1) do
20: 𝑐ℎ𝑎𝑛𝑔𝑒𝑑_𝑑𝑎𝑡𝑎.𝑎𝑡 [𝑖, ′𝑦′] ← 𝑐ℎ𝑎𝑛𝑔𝑒𝑑_𝑑𝑎𝑡𝑎.𝑎𝑡 [𝑙𝑎𝑠𝑡_𝑖𝑑𝑥, ′𝑦′]
21: 𝑠𝑐𝑎𝑙𝑒𝑑_𝑑𝑎𝑡𝑎[𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑡𝑦𝑝𝑒] ← 𝑠𝑐𝑎𝑙𝑒𝑑_𝑑𝑎𝑡𝑎[𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑡𝑦𝑝𝑒] +

𝑐ℎ𝑎𝑛𝑔𝑒𝑑_𝑑𝑎𝑡𝑎
22: return 𝑠𝑐𝑎𝑙𝑒𝑑_𝑑𝑎𝑡𝑎
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is the minimum negative value on the y-axis plus 1. This also ensures that there are no zero
values. It should be noted that it is the relative difference between the peaks in a sample that
are important, not the absolute intensity values.

3.2 Data Transformation

Two well-known data transformation techniques were used: Rate of Change (ROC) and Percentage
Change (PC) shown in Eqns. 1 and 2. Both these techniques modify the original data by making
sharp changes in the original dataset more visible.

• Rate of Change (ROC):

𝑅𝑂𝐶 =
𝑓 (𝑏) − 𝑓 (𝑎)

𝑏 − 𝑎 (1)

where f(a) and f(b) are values on the y-axis and a and b are their corresponding values on the x-axis.

• Percentage Change (PC):

𝑃𝐶 =
𝑓 (𝑎)

𝑚𝑒𝑎𝑛( 𝑓 (𝑎 − 1), ...., 𝑓 (𝑎 − 𝑛)) (2)

where f(a) is the current value of the intensity (y-axis) and n is the number of values on the y-axis.

Figure 4: Sample for polymethyl methacrylate.

Since the PC function did not give good classification results, the ROC function was used as the
main data transformation technique. However, the PC function was used in the augmentation of the
training set, which is described later in Sec. 3.4. As an illustration of this technique, we present two
figures. FIGURE 4, shows the plot for a single sample of type polymethyl methacrylate. FIGURE 5,
shows the transformed plot. The ROC transformation was applied to the intensity values (y-axis)
which results in sharp peaks and preserves the changes in intensity values at the same energy (x-
axis) co-ordinate. It should be noted that, the values on the y-axis can be either positive or negative,
meaning a positive or negative rate of change.
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Figure 5: ROC processed sample for polymethyl methacrylate.

3.3 Discretization- Smoothing by Bin-means

Since Raman spectroscopy data has the characteristics of time-series data, the peaks in the distribu-
tion are the most important patterns that can be extracted from the samples. An equal-width binning
technique was used in this research. Then a smoothing by bin-means technique is applied where
the average of the values in a bin is calculated and each bin is now represented using the average
value. FIGURE 6, shows the results of this technique applied to a single sample for polymethyl
methacrylate type with a bin width of 11. That is, every 11 values are mapped to the same bin, and
the average value of the bin is calculated. One can also observe the compressed scale on the x-axis
as compared to the scale in FIGURE 5.

Figure 6: Binning technique of ROC processed sample for polymethyl methacrylate.

3.4 Augmentation

As the dataset is very small, the data augmentation function has been implemented to populate
the training dataset with more samples. The pseudo-code for the augmentation process is given in
Algorithms 2-5.

The augmentation function works the following way: firstly, the function iterates over a polymer
(plastic) type that needs to be augmented, and the pct_change function is used to calculate the
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change between the current and the previous value of a sample, by dividing the two numbers. This
helps to keep information about the changing values.

Secondly, a random uniform distribution is applied, where random values between -0.05 and 0.05 are
chosen. This is a user-defined parameter random_change and controls how much the augmented
dataset differs from the original sample.

The last step is to reverse the percentage change function, by multiplying the original value with
the new percentage change value. As the percentage change value has been changed slightly, each
generated value is different from the original value. However, such a change leads to a problem
of rapidly increasing or decreasing graph fluctuations. These sharp fluctuations are controlled by
the max_pct_change parameter. This parameter value is set to 99, meaning that the generated
value could be up to 99% more than the original value or 99% less than the original value. Addi-
tionally, Algorithm 2 includes parameter shift. This parameter is meant to shift the values on the
y-axis (higher or lower). However, this value was set to 0, as it does not change the test accuracy
significantly.

Algorithm 2 Generate_Augmented_Data(train_dataset, plastic_type_list, min_num,
random_change=0.05, shift=0, max_pct_change=99)
1: 𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑡𝑦𝑝𝑒_𝑙𝑖𝑠𝑡 ← [𝑒𝑙.𝑙𝑜𝑤𝑒𝑟 () for 𝑒𝑙 in 𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑡𝑦𝑝𝑒_𝑙𝑖𝑠𝑡]
2: 𝑡𝑟𝑎𝑖𝑛_𝑎𝑢𝑔𝑚 ← 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎𝑠𝑒𝑡
3: for 𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑡𝑦𝑝𝑒, 𝑖𝑑𝑥𝑠 in 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎𝑠𝑒𝑡.𝑖𝑡𝑒𝑚𝑠() do
4: 𝑖𝑡𝑒𝑟𝑎𝑡𝑒 ← 0
5: if 𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑡𝑦𝑝𝑒 in 𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑡𝑦𝑝𝑒_𝑙𝑖𝑠𝑡 then
6: while 𝑙𝑒𝑛(𝑡𝑟𝑎𝑖𝑛_𝑎𝑢𝑔𝑚 [𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑡𝑦𝑝𝑒]) < 𝑚𝑖𝑛_𝑛𝑢𝑚 do
7: 𝑐𝑢𝑟_𝑖𝑑𝑥 ← 𝑖𝑡𝑒𝑟𝑎𝑡𝑒 % 𝑙𝑒𝑛(𝑖𝑑𝑥𝑠)
8: 𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒_𝑙𝑖𝑠𝑡 ← 𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒(𝑖𝑑𝑥 [𝑐𝑢𝑟_𝑖𝑑𝑥] [′𝑦′])
9: 𝑎𝑢𝑔𝑚_𝑒𝑥𝑎𝑚𝑝𝑙𝑒 ← 𝑔𝑒𝑡_𝑎𝑢𝑔𝑚_𝑒𝑥𝑎𝑚𝑝𝑙𝑒(𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒_𝑙𝑖𝑠𝑡,

𝑟𝑎𝑛𝑑𝑜𝑚_𝑐ℎ𝑎𝑛𝑔𝑒)
10: 𝑖𝑛𝑖𝑡_𝑣𝑎𝑙𝑢𝑒 ← 𝑖𝑑𝑥𝑠[𝑐𝑢𝑟_𝑖𝑑𝑥] [′𝑦′] [0]
11: if 𝑚𝑖𝑛(𝑖𝑑𝑥𝑠[𝑐𝑢𝑟_𝑖𝑑𝑥] [′𝑦′]) ≤ 0 then
12: 𝑖𝑛𝑖𝑡_𝑣𝑎𝑙𝑢𝑒 ← 𝑖𝑛𝑖𝑡_𝑣𝑎𝑙𝑢𝑒 + 𝑎𝑏𝑠(𝑚𝑖𝑛(𝑖𝑑𝑥𝑠[𝑐𝑢𝑟_𝑖𝑑𝑥] [′𝑦′])) + 1
13: 𝑎𝑢𝑔𝑚_𝑑𝑎𝑡𝑎 ← 𝑔𝑒𝑡_ 𝑓 𝑢𝑙𝑙_𝑎𝑢𝑔𝑚_𝑒𝑥𝑎𝑚𝑝𝑙𝑒(𝑖𝑑𝑥𝑠[𝑐𝑢𝑟_𝑖𝑑𝑥] [′𝑦′],

𝑎𝑢𝑔𝑚_𝑒𝑥𝑎𝑚𝑝𝑙𝑒, 𝑖𝑛𝑖𝑡_𝑣𝑎𝑙𝑢𝑒,
𝑠ℎ𝑖 𝑓 𝑡, 𝑚𝑎𝑥_𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒)

14: 𝑡𝑟𝑎𝑖𝑛_𝑎𝑢𝑔𝑚 [𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑡𝑦𝑝𝑒] ← 𝑡𝑟𝑎𝑖𝑛_𝑎𝑢𝑔𝑚 [𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑡𝑦𝑝𝑒] +
𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒({′𝑥′ : 𝑖𝑑𝑥𝑠[𝑐𝑢𝑟_𝑖𝑑𝑥] [′𝑥′],

′𝑦′ : 𝑎𝑢𝑔𝑚_𝑑𝑎𝑡𝑎})
15: 𝑖𝑡𝑒𝑟𝑎𝑡𝑒 ← 𝑖𝑡𝑒𝑟𝑎𝑡𝑒 + 1
16: 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ← 𝑡𝑟𝑎𝑖𝑛_𝑎𝑢𝑔𝑚

Example of augmented data is shown in FIGURE 7. The line which is coloured red is the original
sample, and a blue line is the augmented sample. It can be seen, that the augmented sample keeps
the same trajectory as the original sample, but introduces some changes on the y-axis values. Peaks
on generated samples are retained on same x-axis values, however, the intensity of such peaks is
different.
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Algorithm 3 pct_change(dataframe)
1: 𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒_𝑙𝑖𝑠𝑡 ← []
2: 𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒 ← 𝑚𝑖𝑛(𝑑𝑎𝑡𝑎 𝑓 𝑟𝑎𝑚𝑒)
3: if 𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒 ≤ 0 then
4: 𝑑𝑎𝑡𝑎 𝑓 𝑟𝑎𝑚𝑒 ← [𝑖 + 𝑎𝑏𝑠(𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒) + 1 for 𝑖 in 𝑑𝑎𝑡𝑎 𝑓 𝑟𝑎𝑚𝑒]
5: for 𝑛𝑢𝑚, _ in 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒(𝑑𝑎𝑡𝑎 𝑓 𝑟𝑎𝑚𝑒[:𝑙𝑒𝑛(𝑑𝑎𝑡𝑎 𝑓 𝑟𝑎𝑚𝑒) − 1]) do
6: 𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒_𝑙𝑖𝑠𝑡 ← 𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒_𝑙𝑖𝑠𝑡 +

(𝑑𝑎𝑡𝑎 𝑓 𝑟𝑎𝑚𝑒[𝑛𝑢𝑚 + 1]/𝑑𝑎𝑡𝑎 𝑓 𝑟𝑎𝑚𝑒[𝑛𝑢𝑚])
7: return 𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒_𝑙𝑖𝑠𝑡

Algorithm 4 get_augm_example(pct_change_list, random_change=0.2)
1: 𝑎𝑢𝑔𝑚_𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒_𝑙𝑖𝑠𝑡 ← []
2: for 𝑒𝑙 in 𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒_𝑙𝑖𝑠𝑡 do
3: 𝑡𝑚𝑝_𝑒𝑙 ← 𝑒𝑙 + 𝑟𝑎𝑛𝑑𝑜𝑚.𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚(−𝑟𝑎𝑛𝑑𝑜𝑚_𝑐ℎ𝑎𝑛𝑔𝑒, 𝑟𝑎𝑛𝑑𝑜𝑚_𝑐ℎ𝑎𝑛𝑔𝑒)
4: if 𝑡𝑚𝑝_𝑒𝑙 ≤ 0 then
5: 𝑡𝑚𝑝_𝑒𝑙 ← 𝑒𝑙 ⊲ el is > 0, because of 𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒 function
6: 𝑎𝑢𝑔𝑚_𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒_𝑙𝑖𝑠𝑡 ← 𝑎𝑢𝑔𝑚_𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒_𝑙𝑖𝑠𝑡 + 𝑡𝑚𝑝_𝑒𝑙
7: return 𝑎𝑢𝑔𝑚_𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒_𝑙𝑖𝑠𝑡

Algorithm 5 get_full_augm_example(original_dataset, pct_change_list, init, shift=0,
max_pct_change=10)
1: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑣𝑎𝑙𝑢𝑒 ← 𝑖𝑛𝑖𝑡 + 𝑠ℎ𝑖 𝑓 𝑡
2: 𝑎𝑢𝑔𝑚_𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒_𝑙𝑖𝑠𝑡 ← []
3: 𝑎𝑢𝑔𝑚_𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒_𝑙𝑖𝑠𝑡 ← 𝑎𝑢𝑔𝑚_𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒_𝑙𝑖𝑠𝑡 + 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑣𝑎𝑙𝑢𝑒
4: 𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒 ← 𝑚𝑖𝑛(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑑𝑎𝑡𝑎𝑠𝑒𝑡)
5: if 𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒 ≤ 0 then
6: 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ← [𝑖 + 𝑎𝑏𝑠(𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒) + 1 for 𝑖 in 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑑𝑎𝑡𝑎𝑠𝑒𝑡]
7: for 𝑛𝑢𝑚, 𝑒𝑙 in 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒(𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒_𝑙𝑖𝑠𝑡) do
8: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑣𝑎𝑙𝑢𝑒 ← 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑣𝑎𝑙𝑢𝑒 ∗ 𝑒𝑙
9: if 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑣𝑎𝑙𝑢𝑒 > 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑑𝑎𝑡𝑎𝑠𝑒𝑡 [𝑛𝑢𝑚 + 1] ∗

(1 + 𝑚𝑎𝑥_𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒/100) then
10: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑣𝑎𝑙𝑢𝑒 ← 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑑𝑎𝑡𝑎𝑠𝑒𝑡 [𝑛𝑢𝑚 + 1] ∗

(1 + 𝑚𝑎𝑥_𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒/100)
11: if 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑣𝑎𝑙𝑢𝑒 < 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑑𝑎𝑡𝑎𝑠𝑒𝑡 [𝑛𝑢𝑚 + 1] ∗

(1 − 𝑚𝑎𝑥_𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒/100) then
12: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑣𝑎𝑙𝑢𝑒 ← 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑑𝑎𝑡𝑎𝑠𝑒𝑡 [𝑛𝑢𝑚 + 1] ∗

(1 − 𝑚𝑎𝑥_𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒/100)
13: 𝑎𝑢𝑔𝑚_𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒_𝑙𝑖𝑠𝑡 ← 𝑎𝑢𝑔𝑚_𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒_𝑙𝑖𝑠𝑡 + 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑣𝑎𝑙𝑢𝑒
14: return 𝑎𝑢𝑔𝑚_𝑝𝑐𝑡_𝑐ℎ𝑎𝑛𝑔𝑒_𝑙𝑖𝑠𝑡
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Figure 7: Improved augmented data (red – original; blue – augmented).

In our research, we have augmented polymer types that have either a small number of samples (e.g.,
less than 5) or have performed poorly on test results.

4. RESULTS AND DISCUSSION

In this section, we analyze the results of the experiments. The following ML algorithms have been
used in this research using the scikit-learn workbench4: support vector machines (SVM), random
forest (RF), decision tree (DT), k-nearest neighbours (KNN), and artificial neural network (ANN).
The RF model is the only model that gives high classification accuracy. Hence, in our discussions
related to the analysis of the effect of different preprocessing, discretization as well as augmentation
techniques, we will use the RF model as our baseline model.

Parameters of all models have been chosen based on the performance of algorithms, however, as
the dataset is small, it is hard to identify the best parameters, as results might be fluctuating after
each training step. For RF model, we used entropy and gini parameters as a criterion. Changing
the number of estimators for RF does not change the accuracy a lot, and 150 n-estimators are used.
For DT we used the entropy parameter for the criterion. SVM uses a linear kernel, as it produced
the best accuracy, compared to other kernels. For KNN we used 3 neighbours, as it produced the
best results and increasing the number would not change results significantly. For ANN, we used 4
layers of 128, 64, 32 and sparse categorical cross-entropy with the adam optimizer, inner layer relu
activation function and sigmoid final activation function. We have tried to change the number of
layers or the size of the layer, but the chosen parameters produced the highest results.

In an effort to increase the training set size, we also experimented with another microplastic dataset
Open Specy 5. This dataset contains a total of 183 examples and 137 polymer types [32]. We
observed that most of the polymer types in this dataset do not appear in SLoPP, therefore, cannot be
used. Additionally, the intensities of the scattered light (y-axis) for Open Spacy dataset is normalized
to values between 0 and 1, and there the original values for the intensities cannot be reconstructed.
As a result, this dataset was not used in our final model training experiments.

4 https://scikit-learn.org/stable/
5 https://doi.org/10.1021/acs.analchem.1c00123.s001
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Experiment Preprocessing Methods RF Accuracy (%)
1 scaling (x-axis), ROC 79.38
2 scaling (x-axis), no ROC 61.85
3 no scaling (x-axis), ROC 72.16
4 no scaling(x-axis), no ROC 53.61

Table 4: Model accuracy with different variations of preprocessing functions.

TABLE 4, presents experiments using different preprocessing functions and with no scaling of the
y-axis values. All experiments were conducted with a combination of the scaling and ROC transfor-
mation methods described in sections 3.1 and 3.2. The best result (accuracy of 79.38% highlighted
in blue) was achieved with scaling energy values and using the rate of change transformed feature.

FIGURE 8, shows the performance of the RF model using different bin sizes ranging from 2 to 50.
The discretization technique which achieves the best result (classification accuracy 86.59% with
information gain criteria) is when the bin size is between 10 and 20. This experiment does not use
any augmentation method.

Figure 8: Accuracy of the model with different bin sizes.

However, if the training dataset is augmented, the accuracy increases dramatically (see FIGURE
9). Augmentation has been applied to the following polymer types: Cellulose Acetate, Polyamide,
PolymethylMethacrylate and Polyurethane, where each type has been augmented up to 15 examples.
Experiments were conducted with two different criteria for the RF model, information gain (in
FIGURE 9) and gini (in FIGURE 10). One can observe that the classification accuracy is not as
good with the gini criteria as with the information gain criteria.

The best result of 91.75% classification accuracy was obtained with a bin size of 12 and information
gain (entropy) as the criteria for tree construction.

FIGURE 11, gives the confusion matrix with classification details for each polymer type in the
SLOPP-E dataset. It can be seen, that the model detects most of the samples correctly. However,
it misclassifies a few samples, especially the Polyurethane polymer where 4 out of 6 samples were
misclassified. The training accuracy of this model is 100%, which signifies that the model overfits.
This is due to the fact that that the model was trained on just 306 samples.
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Figure 9: Accuracy of the model with different bin size with augmented data with information
gain criteria.

Figure 10: Accuracy of the model with different bin size with augmented data with gini criteria.

TABLE 5, shows the most commonly occurring misclassified samples. The model always predicts
the same polymer type for these samples, irrespective of how the data has been processed. Upon
examination of the corresponding Raman spectroscopy plots, it is hard to detect whether the sample
ismislabeled or themodel predicts the result wrongly (FIGURE12-13). FIGURE 12 shows a sample
of a type cellulose acetate, plotted with one example from a train dataset of cotton type (incorrect
type). The peak around 1000 value on the x-axis has the same shape as other peaks which do not
fully correspond to this type (cotton). FIGURE 13, shows a sample of cellulose acetate type, plotted
with one example from a train dataset of the same type (correct type). It can be observed, that these
samples have a different shape compared to the one in FIGURE 12. Hence these samples do not
match.

Since the SLoPP-E test set was subject to weather and ageing, another experiment was conducted by
adding some noise to the training (SLoPP) dataset to introduce some non-linearity. For each value
on the x-axis, a small random value was either added or subtracted. However, the addition of noise
did not change the accuracy in any significant way (see FIGURE 14).
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Figure 11: Confusion matrix for the model that achieved 91.75% accuracy.

Sample number Model predicted Actual label
6 Cotton Cellulose Acetate
12 Polyethylene Polyamide
24 Polyethylene Terephthalate Polyester
50 Polyurethane Polyethylene
88 Cellulose Acetate Polyurethane
89 Polyamide Polyurethane

Table 5: Misclassified cases.

Figure 12: Wrongly detected sample (red) plotted on a wrongly predicted type (blue).
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Figure 13: Wrongly detected sample (red) plotted on a correct type (blue).

Figure 14: Accuracy of the model with noise added to the training dataset.

The final model was trained on augmented data, which was preprocessed using the following func-
tions: ROC, scaling x-axis (0-3500), discretization with the window size 12, no y-axis rescaling.
The following polymer types were augmented: Cellulose Acetate, Polyamide and Polyurethane
(30 samples), Polyester (40 samples), Polymethyl Methacrylate (10 samples) and Polystyrene (20
samples).

Figure 15, gives the confusion matrix where the trained model detects most of the samples correctly,
and only a few samples are mislabeled. Themodel mostly performs poorly on the Polyurethane type,
as it misclassifies 3 out of 6 test samples. The Acrylonitrile Butadiene Styrene type also performs
poorly, as it misclassifies a single test sample. Since there is only 1 test sample available, this
classification could be misleading.

TABLE 6, gives the results of experiments with other models. However, none of the other models
achieved the same accuracy on the test dataset as the random forest model. The ANN model with 4
layers of 128, 64, 32 and sparse categorical cross-entropy was used with the adam optimizer. SVM
with the linear kernel (it produced the best accuracy, compared to other kernels), DT (with entropy)
and KNN with 3 nearest neighbours were used.
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Figure 15: Confusion matrix for the model that achieved 93.81% accuracy.

Models Classification Accuracy
ANN 71.13%
SVM (linear kernel) 73.19%
DT 69.07%
KNN 73.19%

Table 6: Accuracies of different machine learning models.

In summary, our experiments demonstrate that there is a significant improvement in the classifica-
tion accuracy (from 89% to 93.81%) when the dataset is augmented. This shows that a larger data
set with more training and balanced samples can improve the classification performance beyond
94% and learn from environmentally degraded samples. The other important issue is that there is
some concern that the original sample maybe mislabeled. This is because the predicted type (by
the model) is not similar to the actual type (visually). Another observation is that even when wave-
like samples (from the Mendeley dataset) were excluded from the training set, the classification
accuracy was around 90%. This shows that adding the samples (even though some of the shapes
were different) may have in fact helped the model to learn, or at least, did not have a negative effect
on the model. One reason could be that SLoPP-E (test dataset) does not have similar wave-like
samples.
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5. CONCLUSION

In this work, we were primarily interested in detecting polymer types from the spectral signature
of Raman spectroscopy microplastics data which were environmentally aged from a well-known
dataset. Environmental weathering occurs from exposure to temperature extremes, UV radiation,
wind, water erosion in freshwater environments, and saltwater erosion inmarine environments, in ad-
dition to other factors in localized ecosystem contexts. Exposure ofmicroplastics to the environment
affects their spectrographic output data, making spectrographic analysis results less reliable than
unaffected samples. Different normalization methods as well as data transformation methods for
preprocessing and feature engineering were applied. Since the number of training samples in certain
polymer types were limited, a data augmentation method was used. Different ML models were
trained with the random forest model giving the best result with an improvement in classification
accuracy of 93.81% from 89%. A detailed discussion of the results is presented in an effort to
contribute to the understanding chemical compounds of plastics that have beenweathered by various
environmental processes. The significance of this research project is to strive for a measurably
improved predictive capacity of Raman spectroscopy data to help classify polymer types through
an applied machine learning process. This work can lead to applications in ecotoxicology and
environmental research, the circular economy for plastics recycling processes, water quality testing
and treatment processes, food and beverage quality control testing, to name a few.
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