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Abstract

The innovation of next-generation sequencing (NGS) techniques has significantly reduced
the price of genome sequencing, lowering barriers to future medical research; it is now
feasible to apply genome sequencing to studies where it would have previously been cost-
inefficient. Identifying damaging or pathogenic mutations in vast amounts of complex, high-
dimensional genome sequencing data may be of particular interest for researchers. Thus, this
paper’s aims were to train machine learning models on the attributes of a genetic mutation to
predict LoFtool scores (which measure a gene’s intolerance to loss-of-function mutations).
These attributes included, but were not limited to, the position of a mutation on a chromo-
some, changes in amino acids, and changes in codons caused by the mutation. Models were
built using the univariate feature selection technique f-regression combined with K-nearest
neighbors (KNN), Support Vector Machine (SVM), Random Sample Consensus (RANSAC),
Decision Trees, Random Forest, and Extreme Gradient Boosting (XGBoost). These models
were evaluated using five-fold cross-validated averages of r-squared, mean squared error,
root mean squared error, mean absolute error, and explained variance. The findings of this
study include the training of multiple models with testing set r-squared values of 0.97.

1. INTRODUCTION

Last year, Ultima Genomics announced that it could sequence a human genome for just one hundred
dollars per person [1]. The reduced cost of genome sequencing means it may now be possible for
research in the medical field to collect “omics” data (i.e., genomics, epigenomics, transcriptomics,
epitranscriptomics, proteomics, and metabolomics) where it otherwise would have been too expen-
sive to do so. With the generation of potentially vast amounts of data comes the need to develop
informatics tools capable of handling and analyzing it. Machine learning and deep learning pose
a solution [2]. Training machine-learning tools that can identify pathogenic variants in a genome
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sequence is potentially useful to researchers; previous research in the field of prediction of genetic
pathogenicity has been focused on developing deep/machine learning models to predict mutations’
functional effects. For example, methods like FATHMM-MKL and CADD are designed to predict
functional consequences of coding and non-coding variants [3]. MetaRNN (developed in [4]) is
a deep learning method that distinguishes between benign and pathogenic rare mutations. Other
research has focused on datasets of a specific disease, such as PathoPredictor, an ensemble method
made for cardiomyopathy, epilepsy, or RASopathies [S]. Some studies test the generalizability of
models by using existing methods on clinical data [6].

The aim of this paper was to train machine learning models to predict LoFtool scores. To create
the LoFtool gene score, researchers retrieved all high-confident loss-of-function mutations (defined
as those that disrupt protein structure [7]) from Fadista et al.’s 60,706 record Exome Aggregation
Consortium dataset [8]. LoFtool provides a score that quantifies how intolerant a certain gene is to
loss-of-function variants— in other words, how susceptible a gene is to disease if mutated. It ranks
the percentile of intolerance. LoFtool differs from pathogenicity scores such as PolyPhen, SIFT,
ENDEAVOR, or Prioritizer because it can extrapolate its measurements to the gene level instead
of focusing on a single variant’s pathogenicity. It is also possible to calculate the score without
prior knowledge of the disease with which a gene is associated. The LoFtool score has been used
in research for in silico experiments. For example, it was used to analyze the pathogenicity of the
human SODI1 gene, specifically to get a score for an important noncoding Indel [9]. Or, as shown in
[10], LoFtool can be used to identify the most variant-intolerant genes or novel genes in a polygenic
disease such as Type 2 diabetes. The contribution of our trained machine learning models to get
LoFtool scores in a few seconds with high accuracy based on genetic attributes such as chromosome,
strand type, gene, feature, exon number, and codon change could be useful to researchers.

2. METHODS
2.1 Original Dataset

In this study, an open-source, public-domain dataset published in 2020 was used [11]. The original
dataset, created from ClinVar data, contained genetic mutations from 23 chromosomes (X but not
Y chromosome included) and 46 variables quantifying various attributes of the mutation, such as
chromosome location or allelic frequency in the general population. To understand the original data
in more detail, please consult the data card in [11]. To determine whether a variant is classified
as pathogenic or benign, geneticists performed manual classification at labs, sorting variants into
one of three categories: 1) benign or likely benign, 2) VUS (uncertain or conflicting pathogenicity
[12]) or 3) likely pathogenic or pathogenic. If different geneticists at different laboratories assigned
different classifications, then CLASS = 1, and otherwise CLASS = 0. The original dataset was
created so users could create classification models to predict the CLASS variable. However, to use
the dataset to train models and predict pathogenicity scores, all rows where CLASS = 1 were deleted
and the CLASS variable was dropped, eliminating all conflicting information on pathogenicity.
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2.2 Data Preprocessing

High-dimensional data poses challenges to statistical methods. Oftentimes, high-dimensional data
contains redundant information [13]. Thus, the first step of data cleaning was to drop all irrelevant
and/or redundant variables, those with very sparse data, and those with very low variance (TA-
BLE 1). These were the final predictor variables: CHROM, POS, REF, ALT, AF_ESP, AF EXAC,
AF _TGP,MC, IMPACT, SYMBOL, Feature, EXON, cDNA _position, CDS_position, Protein_position,
Amino_acids, Codons, and STRAND. Several columns (cDNA _position, CDS_position, and Pro-
tein_position) contained asterisks, question marks, and dashes in several entries, so these entries
were all dropped.

2.3 Addressing Missing Values and Encoding Categorical Variables

All missing values for the target variable, LoFtool, were dropped (6.23 percent of the data). This
incidentally also dropped all null values from other variables. To identify whether the dropping of
null values caused low variance in any variables, distributions of all continuous and categorical
variables were compared before and after data preprocessing and dropping missing values (see
Supplementary FIGURE 1 and FIGURE 2). Fortunately, no variables developed low variance
and the distributions remained nearly identical. The final dataset contained 37220 entries with 19
variables.

Most of the categorical variables in the dataset were nominal, high-cardinality variables (variables
with many possible categorical values). For example, SYMBOL and EXON had over two-thousand
unique categories. Due to this, regularized target encoding, which has been shown to outperform
other methods of encoding, such as leaf, integer, and hot or dummy encoding for high-cardinality
features [14], was used.

2.4 Visualizing Relationships Within in the Final Dataset

At this point, relationships between variables were explored, specifically the correlation between
different predictors (Fig. 1). Studies focusing on machine learning algorithms in genomics have
shown that correlations between predictor variables in feature sets should be considered [15]. A
Pearson’s correlation coefficient above 0.20 is typically considered a weak correlation, above 0.40
is a moderate correlation, and anything over 0.60 is considered a strong correlation [16].

2.5 Visualizing Skew and Transforming Data

All continuous variables except for LoFtool (AF_ESP, AF EXAC, AG_TGP,cDNA _position, CDS
position, Protein position) were heavily right-skewed, which was considered when developing
machine learning models [17]. These variables had to be transformed in further data preprocessing.
The final, encoded dataset still contained heavily right-skewed variables with dramatic outliers (see
FIGURE 2): AF_EXAC, AF_ESP, AF_TGP, cDNA_position, CDS_position, and Protein_position
variables. The presence of specialized outlier-robust machine learning models such as RANSAC
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Table 1: Variables Dropped and Why

Variable Description

CLASS CLASS =1 for all rows so it doesn’t provide the machine
learning model with any important information

Consequence Redundant to the MC column

CLNDISDB Storage in different databases is not relevant

CLNDN ClinVar’s name for information already in CLNDISDB col-
umn, redundant. Also, storage in ClinVar is not relevant to
pathogenicity

CLNVI Variant’s clinical sources are not relevant to pathogenicity

CLNDISDBINCL, Sparse Data, 0.20 percent or less of data is non-null

CLNDNINCL, CLNSIGINCL,

SSR,DISTANCE,

MOTIF_NAME,

MOTIF_POS,

HIGH_INF_POS,
MOTIF_SCORE_CHANGE

INTRON Sparse Data, only 13 percent of data is non-null

CADD RAW Redundant, an untransformed version of CADD PHRED

BAM_EDIT Is not relevant whether the file was edited or not

Allele Redundant to ALT

CLNHGVS Redundant to ALT and REF columns as well as CHROM and
POS

BIOTYPE Very low amount of variance, 48738 protein_coding and only
11 of any other type

ORIGIN Contains values not described in the data documentation, also
low variance with 47923 in one category

CLNVC Very few values in categories other than single nucleotide

Feature type
CADD PHRED,
BLOSUMBG62,SIFT, PolyPhen

variant

All values are uniform

Other gene scores, not relevant to this study (deleted in a later
supplementary coding file than others in this table but far before
dropping nulls or encoding)

Variables removed due to (i) irrelevance, (ii) redundancy, (iii) low variance, and (iv) sparse data

Arshmeet Kaur and Morteza Sarmadi

[18, 19] suggests that traditional machine learning models may be thwarted by large proportions
of outliers like those present in the cleaned data. RANSAC’s key feature is that it is robust to a
large amount of outliers in input data. Unlike other algorithms built for the same function, it works
by using the smallest amount of entries possible from a dataset and slowly grows the number of
entries. Additionally, logarithm and Yeo-Johnson transformations were used to create two new
datasets. Logarithm transforming works by putting heavily skewed data on a log scale, which leads
to a more normal distribution [20]; however, its validity in biomedical research and data analysis has
been questioned [21, 22] and it has been pointed out that it is unique and only applicable for certain
cases [23]. Because the validity of the Logarithm transformation has been questioned, I decided to
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Figure 1: Correlation Matrix: POS, ¢cDNA position, CDS position, Protein position, CHROM,
SYMBOL, Feature, and EXON are correlated with LoFtool. As can be seen above,
several of these variables were highly correlated with each other (e.g. ¢cDNA position,
CDS position, and Protein position). These variables were kept in mind to drop or add
when testing machine learning models. More details are given in TABLE 2 — TABLE 4.

create one dataset that was Yeo-Johnson transformed. The Yeo-Johnson transform is similar to the
family of Box-Cox transformations, but it is able to handle negative entries [24, 25]. Even after the
transformation, many of the variables still contained significant outliers (FIGURE. 2).

2.6 Feature Selection

With the finalized datasets, the next step was feature selection; redundant and low-variance features
had already been manually filtered out in data cleaning, but selecting sets of relevant features trains
the simplest possible model and helps avoid overfitting. Univariate feature selection techniques
are quick, efficient, and good for high-dimensional datasets. In bioinformatics research, one would
expect that univariate feature selection would be inferior to other types; however, in practice, uni-
variate methods can yield better results (though it is important to note that researchers have explained
this as being a result of limited sample size) [26]. To carry out univariate feature selection, scikit-
learn’s feature selection module’s SelectKBest function was used, which chooses the top k features
(k =10 in this case) in each dataset [27]. Since LoFtool was a continuous target variable, and the
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Figure 2: Distribution of continuous variables before and after applying transformations. As can
be seen in the plots, there were still many outliers left after both transformations. The
log transformation normalized allele frequency columns more than the Yeo-Johnson

transformation.
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problem was a regression problem, f-regression was used to select ten out of eighteen variables
for use. For all data (df loftool.csv, df loftool log.csv, df loftool yj.csv), these features were
selected: [’POS’, ’cDNA_position’, ’CDS_position’, ’Protein_position’, ’STRAND’, ‘CHROM’,
’SYMBOL’, ’Feature’, ’EXON’, ’Codons’]. Seeing the strong correlations between some of these
features, some were taken out manually and important findings were added to TABLE 2 — TABLE 4.

Table 2: Non-transformed Dataset

Dataset Used Model Used Feature Selection R2 MSE RMSE MAE EV
df loftool KNN Regressor Univariate Feature Selection 0.44 -0.07 -0.26 -0.16 0.45
(f-regression)
KNN Regressor Univariate Feature Selection 0.95 -0.01 -0.08 -0.04 0.95
(f-regression) (POS,

cDNA_position, CDS_positon,
Protein_positon removed)
Decision Tree Univariate Feature Selection 0.96 -0.00 -0.07 -0.03 0.96

Regressor (f-regression)

Random Forest Univariate Feature Selection 0.97 -0.00 -0.06 -0.03 0.97

Regressor (f-regression)

XGB Univariate Feature Selection 0.97 -0.00 -0.06 -0.03 0.97
(f-regression)

SVR Univariate Feature Selection -0.32 -0.17 -0.41 -0.32 -0.10
(f-regression)

SVR Univariate Feature Selection 0.92 -0.01 -0.10 -0.08 0.92
(f-regression) (POS,

cDNA_position, CDS_positon,
Protein_positon removed)

RANSAC Univariate Feature Selection 0.90 -0.01 -0.11 -0.06 0.90
(f-regression)

RANSAC Univariate Feature Selection 0.90 -0.01 -0.11 -0.06 0.90
(f-regression) (POS,

cDNA_position, CDS_positon,
Protein_positon removed)

Five-fold cross-validated averages of r-squared, mean squared error, root mean squared error,
mean absolute error and explained variance for the dataset that had no transformations applied
to it. Univariate Feature Selection (Using F-regression) Feature Set: [’POS’, ’cDNA_position’,
’CDS_position’, *Protein_position’, ’STRAND’, ’"CHROM’, ’'SYMBOL’, ’Feature’, ’EXON’,
’Codons’]

2.7 Model Selection

To predict LoFtool, K Nearest Neighbors (KNN) Regressor, Support Vector Regressor (a type
of SVM abbreviated SVR), Decision Trees, Random Forest Regressor, Extreme Gradient Boost
(XGB), and RANSAC were used. To evaluate the performance of the models used, k-fold cross-
validation was used, as this method can test generalization and control overfitting of machine learn-
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Table 3: Log-transformed Dataset

Dataset Used Model Used Feature Selection R2 MSE RMSE MAE EV
df loftool logKNN Regressor Univariate Feature Selection 0.90 -0.01 -0.11 -0.07 0.90
(f-regression)
KNN Regressor Univariate Feature Selection 0.95 -0.01 -0.08 -0.05 0.95
(f-regression) (POS,

cDNA position, CDS_positon,
Protein_positon removed)
Decision Tree Univariate Feature Selection 0.96 -0.00 -0.07 -0.03 0.96

Regressor (f-regression)

Random Forest Univariate Feature Selection 0.97 -0.00 -0.06 -0.03 0.97

Regressor (f-regression)

XGB Univariate Feature Selection 0.97 -0.00 -0.06 -0.03 0.97
(f-regression)

SVR Univariate Feature Selection 0.89 -0.01 -0.12 -0.09 0.89
(f-regression)

SVR Univariate Feature Selection 0.92 -0.01 -0.10 -0.08 0.92
(f-regression) (POS,

c¢cDNA position, CDS_positon,
Protein_positon removed)

RANSAC Univariate Feature Selection -0.28 -7.40 -0.39 -0.08 -71.47
(f-regression)

RANSAC Univariate Feature Selection 0.90 -0.01 -0.11 -0.06 0.90
(f-regression) (POS,

cDNA_position, CDS_positon,
Protein_positon removed)

Five-fold cross-validated averages of r-squared, mean squared error, root mean squared error,
mean absolute error and explained variance for the dataset that was logarithm transformed.
Univariate Feature Selection (Using F-regression) Feature Set: ['POS’, ’cDNA position’,
’CDS_position’, ’Protein_position’, ’STRAND’, ’"CHROM’, ’'SYMBOL’, ’Feature’, ’EXON”,
’Codons’]

ing models [28]. Performance metrics that were calculated included averaged r-squared, mean
squared error, root mean squared error, mean absolute error, and explained variance.

3. RESULTS AND DISCUSSION

All models performed well (with an r-squared values ranging from 0.90-0.97) except of KNN
Regressor (r-squared 0.44) and SVR (r-squared -0.32). XGBoost and Random Forest performed
best with r-squared values 0f 0.97, and had identical metrics for MSE, RMSE, MAE, and EV as well.
Decision tree (r-squared = 0.96) could be a more interpretable, quicker, and less computationally
expensive than Random Forest or XGBoost, given the high accuracy. When highly correlated
variables (POS, cDNA _position, CDS_position, Protein_position) are dropped, the R-squared value
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Table 4: Yeo-Johnson Transformed Dataset

Dataset Used Model Used Feature Selection R2 MSE RMSE MAE EV
df loftool yj KNN Regressor Univariate Feature Selection 0.42 -0.07 -0.27 -0.16 0.44
(f-regression)
KNN Regressor Univariate Feature Selection 0.95 -0.01 -0.08 -0.04 0.95
(f-regression) (POS,

cDNA _position, CDS_positon,
Protein_positon removed)
Decision Tree Univariate Feature Selection 0.96 -0.01 -0.07 -0.03 0.96

Regressor (f-regression)

Random Forest Univariate Feature Selection 0.97 -0.00 -0.06 -0.03 0.98

Regressor (f-regression)

XGB Univariate Feature Selection 0.97 -0.00 -0.06 -0.03 0.97
(f-regression)

SVR Univariate Feature Selection -0.32 -0.17 -0.41 -0.32 -0.10
(f-regression)

SVR Univariate Feature Selection 0.92 -0.01 -0.10 -0.08 0.92
(f-regression) (POS,

cDNA_position, CDS_positon,
Protein_positon removed)

RANSAC Univariate Feature Selection 0.90 -0.14 -0.11 -0.07 0.90
(f-regression)

RANSAC Univariate Feature Selection 0.90 -0.01 -0.11 -0.06 0.90
(f-regression) (POS,

cDNA_ position, CDS positon,
Protein_positon removed)

Five-fold cross-validated averages of r-squared, mean squared error, root mean squared error,
mean absolute error and explained variance for the dataset that was Yeo-Johnson transformed.
Univariate Feature Selection (Using F-regression) Feature Set: [POS’, ’cDNA position’,
’CDS_position’, ’Protein_position’, ’STRAND’, ’"CHROM’, ’'SYMBOL’, ’Feature’, ’EXON’,
’Codons’]

more than doubled for KNN Regressor (r-squared 0.95) and SVR (r-squared0.92). This indicates
that those features added noise rather than improving learning. This same effect was not observed
in RANSAC, which indicates that the feature selection is dependent on the model used. RANSAC
is robust to outliers [18, 19] and those columns that were dropped from the feature set contained
significant outliers (see FIGURE 2). This may explain the consistent accuracy with and without
those columns included in training the RANSAC model. This suggests that KNN and SVR are less
robust to outliers, supporting findings from [insert paper if I can find one that says that].

To gather more information on how skew of these input variables was affecting model performance,
we applied the log and yeo-johnson transformations. As we can see in TABLE 3, KNN performed
well (r-squared = 0.90) when log transformation was applied to the input variables. The performance
did not change when POS, cDNA_position, CDS_position, Protein_position were dropped. This
indicates that that the improved performance seen in KNN and SVR in TABLE 1 when these
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variables were dropped is more likely attributable to the features being heavily right skewed and
the models KNN and SVR rather than being strongly correlated with each other. However, the
performance of the model combined with transformation and feature selection is likely heavily
impacted by the model chosen: RANSAC deteriorated after log transformation (r-squared = -0.28)
and performed well (r-squared = 0.90) when POS, cDNA_position, CDS_position, Protein_position
were dropped. Additionally, the ranking of models did not change between the non-transformed and
log-transformed datasets, indicating that Decision Tree, Random Forest and XGB are all already
relatively robust to outliers.

4. CONCLUSION

All of the models were trained and tested on the datasets created. TABLE 2 — TABLE 4 contain the
averaged Cross-Validation scores for k-fold (k=5) cross-validation. Random Forest and XGBoost
Regressors performed the best in all three LoFtool datasets, with KNN and Decision Tree Regressor
in close second. It did not seem to make a difference if the dataset was transformed or not, as several
models achieved an r-squared value of 0.97 regardless of transformation. However, notably, when
cDNA_ position, CDS_position, and Protein_position, which had significant outliers, and were also
very highly correlated with each other, FIGURE 1 and FIGURE2 were removed along with POS,
models tended to perform much better. For example, as seen in TABLE 2, KNN had an r-squared
value of 0.44 and 0.95 before and after removal of cDNA_position, CDS_position, Protein_position,
and POS and SVR went from an r-squared of -0.32 to 0.92. RANSAC, which is robust to outliers,
did not perform the best in any of the datasets. This study shows the potential use of machine
learning in analysis of genetic mutations and trains a tool potentially useful to researchers in the
fields of sequence analysis and pathogenicity prediction. Future research could further explore how
varying data distributions and feature selection techniques affect the performance of models, or test
generalizability of the model with larger datasets.
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