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Abstract
Recent works have proven the effectiveness of k-nearest-neighbor machine translation(a.k.a
kNN-MT) approaches to produce remarkable improvement in cross-domain translations.
However, these models suffer from heavy retrieve overhead on the entire datastore when
decoding each token. We observe that during the decoding phase, about 67% to 84% of
tokens are unvaried after searching over the corpus datastore, whichmeansmost of the tokens
cause futile retrievals and introduce unnecessary computational costs by initiating k-nearest-
neighbor searches. We consider this phenomenon is explainable in linguistics and propose a
simple yet effective multi-layer perceptron (MLP) network to predict whether a token should
be translated jointly by the neural machine translation model and probabilities produced by
the kNN or just by the neural model. The results show that our method succeeds in reducing
redundant retrieval operations and significantly reduces the overhead of 𝑘NN retrievals by
up to 53% at the expense of a slight decline in translation quality. Moreover, our method
could work together with all existing kNN-MT systems.
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1. INTRODUCTION

Neural machine translation has achieved great success but also faces huge challenges. Stacked-
Transformers [1], based neural machine translation(NMT) have shown promising performance and
evolved various methodologies for further improvements. When neural translation models try to
learn representations of the semantics on the training corpus and generalize to downstream tasks by
classifying representations to some tokens, therefore out-of-domain issues occur. The recent con-
cerned 𝑘 nearest neighbor machine translation(𝑘NN-MT) [2], proposes a non-parametric method to
enhance NMT systems. At each decoding phase 𝑘NN-MT retrieves by current latent representation
to potential target tokens in a pre-built key-value datastore, it jointly considers the probabilities
distribution of each token given by the neural model and the 𝑘 nearest reference tokens. When
using an out-of-domain neural translation model, the datastore could be created from an in-domain
corpus, thus 𝑘NN-MT significantly rises the performance on cross-domain machine translations.
Besides, it could also slightly boost the results of in-domain translations.

Figure 1: Overview of our method. The selector predicts all the tokens to decide whether to revise
the probability distribution. 𝑘NN retrievals only occur on parted tokens instead of all tokens, thus
we speed up the 𝑘NN-MT systems.

However, massive retrievals from entire datastore by high-dimension representations bring non-
negligible computational costs to 𝑘NN-MT systems. According to the primitive paper of 𝑘NN-
MT [2], 𝑘NN introduces two-orders slower to original NMT models. This overhead limits the
applications of 𝑘NN-MT systems to some practical scenarios, such as simultaneous translation [3],
tasks.

Previous works for accelerating 𝑘NN-MT systems suggest shrinking the size of the datastore [4–
6], reducing the dimension of representation for retrieval [5, 6]. We observe that about 67%-84%
predicted tokens are kept unchanged on its datasets after being revised by the vanilla 𝑘NN-MT

1944



https://www.oajaiml.com/ | February 2024 Xiangyu Shi, et al..

Table 1: Redundant ratio tested on multi-domain dataset [7, 8]. The results are measured on test
set, and beam searching has been considered in.

IT Koran Law Medical

Redundant 0.80 0.67 0.84 0.81

system, which means retrievals for these tokens bring redundant computational overhead, as shown
in TABLE 1. Towards faster 𝑘NN-MT, we proposed a simple yet effective MLP to predict the
necessity to retrieve each token. The translation procedure is shown as FIGURE 1. We only add an
MLP (so-called selector) after an off-the-shelf NMT model.

We propose our contributions are:

• We observe that most of the tokens do not actually require retrievals. This is our concerned
issues of current 𝑘NN-MT models, which opens up a new idea for 𝑘NN-MT and may inspire
valuable academical research.

• We provide a simple yet effective baseline model and public the source codes1 for this idea,
the code may help industrial applications.

• Our method and potential similarity methods could work together with any existing 𝑘NN-MT
system for further accelerating.

2. BACKGROUND

This section briefly introduces the background of 𝑘NN-MT, including its previous works, method-
ologies, and diverse 𝑘NN-MT variants.

2.1 Neural Machine Translation

Currently, neural machine translation is implemented under sequence to sequence [9], frameworks
with attention mechanism [10, 11]. Given a source sequence x = {𝑥1, · · · , 𝑥𝑛}, the NMT modelM
translates x to the target sequence y = {𝑦1, · · · , 𝑦𝑚} in another language. At each step of decoding,
the NMT model produces the probability distribution over the vocabulary 𝑝𝑀𝑇 (𝑦𝑖 |x, ŷ1:𝑖−1). This
probability will be used in beam search for text generation. NMT models trained on particular
domains perform deterioration when translating out-domain sentences [7, 12].

2.2 Domain Adaptation for NMT

The most concerned approach to adapt a general domain NMT model to a partial domain is to con-
tinue training the neural model on the in-domain corpus. However, this finetuning method demands

1 https://github.com/sxysxy/Less-Retrieve-KNN-MT
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large computational resources and suffers from the notorious catastrophic forgetting issue [13, 14].
Moreover, in real applications scenarios, the domains of translating sentences are rarely known
ahead of the time. So multi-domain neural machine translation in one architecture is proposed [15–
17].

2.3 Retrieval-Argmented Text Generation

Retrieval-augmented methods are concerned in text generation tasks recently. RetNRef [18], con-
catenate the representations of a generative LSTM with attention model and the embeddings of
retrieved over dialogue history, then use it to generate as usual. Knowledge-intensive question
answering is augmented by retrieving similar documents from Wikipedia as contexts [19]. BERT-
𝑘NN [20], adds a kNN searching over a large datastore after original BERT model [21], and excels
the BERT model on question answering by large margin. BERT-𝑘NN model gives more precise
answers than the baseline model and can learn new knowledge from the datastore without training.
As for machine translation, Gu et al. [22], propose to retrieve several parallel sentence pairs based
on edit distance with source sequence to perform the translation.

The common pattern is to retrieve similar texts or embeddings in a datastore and use retrieving
results to enhance generation. Training a tuned neural translation model requires enormous com-
puting power and a parallel corpus. Non-parametric or few-parametric retrieval-based approaches
offer opportunities to learn new knowledge and adapt to new domains at a low cost.

2.4 𝑘NN-MT

The basis of 𝑘NN-MT is datastore creation and retrieving for probability distributions.

2.4.1 Datastore

𝑘NN-MT first creates a datastore on corpus C, for each parallel sequence pair (x, y), it adds several
key-value pair {( 𝑓 (x, y1:𝑖−1), 𝑦𝑖) |𝑖 = 1, · · · , 𝑚} into the datastore D, where 𝑓 (x, y1:𝑖−1) is the
intermediate representation given by the decoder of M. Therefore, the datastore could be created
on any parallel corpus without any training step.

2.4.2 Estimation of probability distribution

At decoding time given input (x, ŷ𝑖−1), it makes a query 𝑞 = 𝑓 (x, ŷ𝑖−1) and retrieves 𝑘 nearest
neighbor 𝑘1, ·, 𝑘𝐾 with their corresponding target tokens. Thus, 𝑝𝑘𝑁𝑁 is estimated by 𝐿2 distances
𝑑 and a temperature 𝑇 , normalizing retrieved set into a probability distribution over vocabulary by
softmax:

𝑝𝐾𝑁𝑁 (𝑦𝑖 |x, ŷ𝑖−1) = sofmtax(
−𝑑 (𝑞, 𝑘 𝑗)

𝑇
), 𝑗 = 1, · · · , 𝐾 (1)
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Temperature 𝑇 greater than one flattens the distribution and prevents overfitting to the only nearest
retrieval [2].

The probability distribution given by the NMT model and 𝑘NN is finally interpolated with a hyper-
parameter 𝜆:

𝑝combined (𝑦𝑖 |x, ŷ𝑖−1) = 𝜆𝑝𝐾𝑁𝑁 (𝑦𝑖 |x, ŷ𝑖−1)
+ (1 − 𝜆)𝑝𝑀𝑇 (𝑦𝑖 |x, ŷ1:𝑖−1)

(2)

To summarize, compared with other methods of cross-domain transfer learning of neural machine
translation models, 𝑘NN based approach stands out� The original method is non-parametric, which
means that onlymore andmore in-doman data is needed toworkwell without any training. In theory,
it’s possible to updatemachine translation systems in real time to keep upwith the rapid development
of The Times. While other effective methods always require heavy training work and hard to update
by new data. And derived methods, for example our work and other 𝑘NN-MT variants presented
later, although the introduction of new neural network structures require training, they typically
only require only a few thousands parallel sentence pairs, whereas retraining or fine-tuning a neural
machine translation model requires hundreds of thousands or even millions data.

Our work focus on improving the performance of the 𝑘NN-MT models with a large datastore.
Previous accelerating works consider reducing the dimension of features, and trimming the size
of datastore, we do by reducing the number of retrievals, this is a new research idea.

2.5 Adaptive-kNN-MT

Adaptive variant [23], adds a light-weight feed-forward network namedMeta-k network to dynam-
ically assign weights for probability distributions given by the neural model and 𝑘 nearest reference
sample, the final prediction is obtained by

𝑝combined (𝑦𝑖 |x,ŷ𝑖−1)
= 𝑝Meta( 𝑓 (x, y1:𝑖−1)) · 𝑝𝑀𝑇 (𝑦𝑖 |x, ŷ1:𝑖−1)

+
𝐾∑
𝑗=1

𝑝Meta(𝑘 𝑗) · 𝑝𝑘𝑖𝑁𝑁 (𝑦𝑖 |x, ŷ1:𝑖−1)

Here 𝑝Meta is calculated by a simple feed-forward network with distances and distribution of target
tokens of its 𝑘 nearest neighbors, 𝑝𝑘𝑖𝑁𝑁 is also given by Eq. 1. The Adaptive approach introduces
almost no inference latency and achieves 1.44 ∼ 2.97 BLEU score improvements than the vanilla
𝑘NN-MT.
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2.6 PCK-kNN-MT

PCK variant [5], extends the Adaptivemethod and trains a compact network to reduce the dimension
of key vectors. It also makes margins between keys with different target tokens more discriminable.
Then it prunes the size of the datastore by deleting redundant key-value pairs. It is a typical
and effective accelerating method of reducing the query dimension and shrinking the datastore.
Compared with our method, which accelerates 𝑘NN-MT by eliminating unnecessary retrievals and
is simple also highly interpretable.

We will show that our method could work with the Adaptive and the PCK 𝑘NN-MT.

2.7 Some Other 𝑘NN-MT Variants

• SK-MT [24], a distance-ware adapter is introduced to adaptively incorporate retrieval results.

• RevisedKeyKNN-MT [25], a simple feed-forward netowrk is trained to add a revising vector
to original query. It improves the retrieving accuarcy and enhances the adaptation.

• Robust KNN-MT [26], introducing NMT condfidence to alleviate deterioration casued by
noisy key-value pairs.

2.8 kNN-BOX

kNN-BOX [27], assembles various implementations of 𝑘NN-MT systems, together with the base-
line NMT model. It provides a unified framework for modeling and evaluations. It uses FAISS
[28], for efficient high-dimensional vector retrievals implementations. Our implementation and
experiments are based on this framework. It is a remarkable fact that kNN-BOX further optimizes
the codes and significantly speeds up retrievals, and we do not observe two-orders slower in speed
as the original paper reports.

3. METHODOLOGY

We consider that the reason why most tokens do not require 𝑘NN retrieval in cross-domain machine
translation is that the frequent words always keep unvaried in diverse domains, for example, in
English, they may be punctuations and prepositions. Meanwhile, the out-of-domain issue often
occurs in nouns and verbs. We count these types of words, and the ratios keep unchanged after
𝑘NN retrievals, for example, as shown in FIGURE 2. Thus, the idea is highly explainable.

3.1 Our Mehtod

We train a simple 3-layer MLP network called selector to predict whether each token to retrieve
or not. We want the selector directly distinguish the latent representations of in-domain and out-
domain semantics. The MLP network contains one hidden layer with ReLU(𝑥) = max(0, 𝑥) as
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the activation function, and a softmax activation function after the output layer, thus It gives the
probabilities for the two options by

Figure 2: Top-8 tokens which cause futile
retrievals on multi-domain IT dataset.
These tokens are always unchanged after
𝑘NN retrievals.

Figure 3: The training procedure of our method.

𝑝(A𝑖 | 𝑓 (x, y1:𝑖−1)) = softmax(𝑊𝑇
2 [ReLU(𝑊𝑇

1 · 𝑓 (x, y1:𝑖−1))]) (3)

where 𝑊1 ∈ R𝑑×𝑑′ and 𝑊2 ∈ R𝑑′×2. 𝑑′ is the inner hidden dimension of the MLP. A𝑖 ∈ {0, 1} is
the decision of whether to retrieve for 𝑦𝑖, 0 is to retrieve and 1 is not.

3.2 Training Procedures

We make labels 𝑙 for the selector by observing the predictions of the neural translation model M
and the target sequences y. If 𝑦𝑖 = M( 𝑓 (x, y1:𝑖−1)) is equal to 𝑦𝑖, we mark the label of 𝑓 (x, y1:𝑖−1)
to be 1, otherwise 0. Weighted cross-entropy loss is used as the criterion to train the network, the
loss is measured by

L1 =
∑
𝑖

[−𝑁
𝐵
[𝑙𝑖 = 0] log 𝑝(A𝑖 = 0| 𝑓 (x, y1:𝑖−1))

− (1 − 𝑁

𝐵
) [𝑙𝑖 = 1] log 𝑝(A𝑖 = 1| 𝑓 (x, y1:𝑖−1))]

(4)

In Eq. 4 𝐵 is the number of the tokens in the training batch, and 𝑁 is the number of negative samples
where A𝑖 = 1

The selector predicts each token and impacts the decoding results, so we also want to train the net-
work by translation loss. For each sample, the selector selects those tokens requiring retrievals then
revises their probability distributions by Eq. 2, the rest tokens keep their probability distributions
unvaried. The final probability distribution over vocabulary 𝑉 for 𝑦𝑖 is:

1949



https://www.oajaiml.com/ | February 2024 Xiangyu Shi, et al.

𝑝(𝑦𝑖 |x, ŷ1:𝑖−1) =
{
𝑝𝑀𝑇 (𝑦𝑖 |x, ŷ1:𝑖−1) A𝑖 = 0

𝑝combined (𝑦𝑖 |x, ŷ1:𝑖−1) A𝑖 = 1 (5)

Thus we could train the parameters by translation loss:

L2 =
∑
𝑖

[−
∑
𝑦𝑖∈𝑉

[𝑦𝑖 == 𝑦𝑖] log 𝑝(𝑦𝑖 |x, ŷ1:𝑖−1)] (6)

And the final loss:

L =
L1
𝐵

+ L2
𝐵

(7)

Where B is the total number of tokens in the training batch, the entire training procedure is shown
in FIGURE 3.

Another problem is to determine

A𝑖 = argmaxA 𝑝(A| 𝑓 (x, y1:𝑖−1)),A ∈ {0, 1} (8)

Undifferentiable argmax operation is used to address gradient intercept issues, we use the gumbel-
softmax [29], trick to approximate a gradient for the argmax operation as follows:

𝐺 ≈ ∇𝑊
exp((log 𝑝(A| 𝑓 (x, y1:𝑖−1);𝑊)) + 𝑔𝑚 (A′))/𝜏)∑

A′∈{0,1}
exp((log 𝑝(A′ | 𝑓 (x, y1:𝑖−1);𝑊)) + 𝑔𝑚 (A′))/𝜏)

Where 𝑊 is the inner trainable parameters of the selector, and 𝑔𝑚 = − log(− log(𝑢)) with 𝑢 ∼
𝑈 (0, 1), 𝜏 is the temperature hyper-parameter.

Finally, the model could be optimized by this loss describled in 7 with Adam algorithm [30].

3.3 Metrics

To evaluate our method, we use the following metrics. The time is measured three times and
averaged.

• Sacre-BLEU [31], is the recommended by WMT to be the evaluating metrics.

• Inference time: The total time consumed for the neural model, selector(if exists) and 𝑘NN to
translate all testing sequences.
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Algorithm 1 Integrating the selector into 𝑘NN-MT systems
Input: Source sequnece x and partial translated ŷ1:𝑖−1
Parameter: NMT ModelM, Selector S, Datastore D, 𝐾
Output: 𝑝(𝑦𝑖 |x, ŷ1:𝑖−1)
1: Let 𝑧 = 𝑓M (x, ŷ1:𝑖−1)
2: Let 𝑝𝑀𝑇 (𝑦𝑖 |x, ŷ1:𝑖−1) = M(𝑧)
3: if S(𝑧) == 0 then
4: Retrieve 𝐾 nearest neighbors from D
5: Estimated 𝑝𝑘𝑁𝑁 (𝑦𝑖 |x, ŷ1:𝑖−1) by Eq. 1
6: Caculate 𝑝𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 (𝑦𝑖 |x, ŷ1:𝑖−1) by Eq. 2
7: return return 𝑝𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 (𝑦𝑖 |x, ŷ1:𝑖−1)
8: else
9: return 𝑝𝑀𝑇 (𝑦𝑖 |x, ŷ1:𝑖−1)
10: end if

• KNN overhead time: A time composed of selector prediction, 𝑘NN retrievals and probability
distribution revision. It is also a part contained in the total inference time. The reason why we
do not only use inference time or tokens per second metrics but also measure this indicator is
discussed later.

• Tokens per second The average tokens translated per second.

• Precision and Recall: We dictate that samples requiring retrievals are positive and others are
negative. Therefore higher precision index indicates less futile retrievals and is closer to the
speed of the pure NMT model. A high recall index means approaching full retrievals on 𝑘NN
and better translation quality.

• Ratrieving ratio: Besides, we introduce a new metric retrieving ratio for the selector, it is the
ratio of tokens predicted not to retrieve to the total number of tokens.

3.4 Integration

Our selector could be integrated into any other 𝑘NN-MT systems by training the selector and save
its weights on vanilla 𝑘NN-MT then loading it in any 𝑘NN-MT variants. The procedure could be
described as pseudo shown in algorithm 1.

Table 2: These values come from the original 𝑘NN-MT paper FIGURE 5 [2].

IT Koran Law Medical

𝜆 0.7 0.8 0.8 0.8
T 10 100 10 10
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Table 3: Time comparison in seconds. For each dataset we measured the inference time(Total)
and 𝑘NN overhead time(KNN) metrics. To measure the exact time, the global CUDA stream
is synchronized before the boundary of the relevant code snippets, slightly reducing operational
efficiency. KNN overhead time comprises 𝑘NN retrieving, selector predicting, and probability
distribution revising. The server equips with an Intel Core i9-12900K CPU and an Nvidia Quadro
RTX8000 GPU.

Systems IT Koran Law Medical Averge

Total KNN Total KNN Total KNN Total KNN Total KNN

Vanilla KNN-MT 18.83 4.04 28.90 5.02 64.53 22.22 39.33 9.43 37.90 10.18

Vanilla + Selector 16.77 2.41 27.77 3.74 52.6 10.38 34.63 5.97 32.94 5.63
(-40.3%) (-34.2%) (-53.3%) (-36.7%) (-44.7%)

Table 4: Domain adaption performance on the test dataset. For the PCKmethod, we do not perform
a datastore prune to keep the same datastore scale. So our selector remarkably improves translation
speed for all these 𝑘NN-MT variants. The larger the size of the datastore and the number of
neighbors 𝐾 , there is the more pronounced the advantage of reducing redundant retrievals.

Systems
IT Koran Law Medical Averge

BLEU Tokens/s BLEU Tokens/s BLEU Tokens/s BLEU Tokens/s BLEU Tokens/s
Pure NMT Model 38.35 2171.8 16.26 2199.0 45.48 1922.6 40.06 1919.6 35.04 2053.3

Vanilla, 𝐾 = 8
Vanilla KNN-MT 45.52 1638.3 20.54 1720.8 61.08 1243.0 53.51 1347.2 45.16 1487.3
Vanilla + Selector 43.90 1843.1 18.55 1820.2 57.18 1509.1 48.70 1540.4 42.08 1678.2

Adaptive, maximum 𝐾 = 4
Adaptive KNN-MT 47.78 1676.0 20.23 1749.3 63.00 1230.1 56.31 1371.4 46.83 1506.7
Adaptive + Selector 46.12 1857.2 18.64 1847.0 58.71 1489.8 50.26 1619.5 43.43 1703.4

PCK, maximum 𝐾 = 4
PCK KNN-MT 47.61 1774.5 19.74 1788.0 62.95 1376.0 56.62 1510.1 46.73 1612.2
PCK + Selector 45.77 1891.8 18.67 1869.5 57.96 1552.2 50.38 1583.0 43.20 1724.1

4. EXPERIMENTS

4.1 Hyper-parameters

Adopting the WMT19 En-De model [32], and freezing its parameters during training, We employ
the crucial hyper-parameters interpolating index 𝜆 and temperature 𝑇 the same values in the vanilla
𝑘NN-MT as TABLE 2.

As for 𝑘NN-MT systems with adaptiveMeta-k network, we set the maximum number of neighbors
to 4, and as for others, we form to retrieve fixed 8 nearest neighbors.

We create datastore on the training corpus and train the selector on the valid dataset of each domain
as 𝑘NN-BOX framework used to do. An Adam optimizer [30], is used for training 100 epochs with
an initial learning rate to be 1e-4. Temperature 𝜏 for Gumbel-softmax is fixed at 0.1, more details
are reported in the appendix.
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Table 5: The metrics of the selector.

Precision Recall Retrieving Ratio

IT 0.60 0.81 0.53
Koran 0.70 0.78 0.58
Law 0.53 0.81 0.48
Medical 0.64 0.80 0.49

Table 6: The metrics of the selector trained without translation loss. (+/-*) compares with
counterparts in TABLE 5.

Precision Recall Retrieving Ratio

IT 0.68(+0.08) 0.60(-0.21) 0.35(-0.18)
Koran 0.76(+0.06) 0.62(-0.16) 0.42(-0.16)
Law 0.58(+0.05) 0.73(-0.08) 0.39(-0.09)
Medical 0.67(+0.03) 0.77(-0.04) 0.44(-0.05)

4.2 Results

4.2.1 The selector succeeds in discriminating samples that need retrievals.

TABLE 5 shows the classifying quality of the selector. These metrics indicate that the selector se-
lects about 50% tokens to retrieve, and about 80% of them genuinely require retrievals. By contrast,
if each sample is randomly predicted, the Recall metric should be only about 50%. According to
TABLE 1, only 16%-33% tokens entail retrievals, but the selector performs much higher Precision
metrics, The results have proven the selector to be effective. Our approach is independent of both
retrieving strategy and the datastore. Experiments only test the 𝑘NN overhead time reduction after
adding the selector to the Vanilla 𝑘NN-MT, but in theory, there should also be speedups close to
TABLE 3, for any other 𝑘NN-MT systems.

4.2.2 The selector significantly speeds up existing 𝑘NN-MT system.

TABLE 3 indicates the selector optmizes 36.7% to 53.3% 𝑘NNoverhead time. TABLE 4, represents
the translation qualities and inference speed. With a selector, all other 𝑘NN-MT systems gain
accelerated.

4.2.3 Ablation for translation loss.

We also train selectors without translation losses described by Eq. 6, Note that Gumbel-softmax trick
is turned off when translation losses are undesired. the results are present in TABLE 6 and TABLE
7. We observe considerably lower translation quality on all the datasets, however, remarkable
variations of selector metrics occur on the IT and Koran dataset while slight changes in selector
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IT Koran Law Medical

41.53(-2.37) 17.91(-0.64) 54.90(-2.28) 47.59(-1.11)

Table 7: BLEU scores of vanilla 𝑘NN-MT involving a selector trained without translation loss. (-*)
compares with counterparts in TABLE 4, on the row ’Vanilla + Selector’.

metrics occur on Law and Medical dataset. It is unclear how these metrics quantitatively affect
translation quality, but we can empirically conclude that translation losses do not, at the very least,
lead to model deterioration.

4.2.4 summary

Hyper-parameters 𝑇 and 𝜆 do not affect the efficiency of the operation, and the best values for
translation quality have been tested and given in previous related work and shown in TABLE
2, please refer to the references. All experiments can be completed within a few hours on an
RTX8000 GPU, and training a selector only takes tens of minutes. The introduction of translation
loss significantly improves the performance without causing a significant reduction in training
speed. It’s possible to introduce a factor to increase or decrease the confidence of the decision
given by the selector, thus controlling the trade-off between translation quality and inference speed.

5. DISCUSSION

5.1 Real-World Applications

From the results, the Koran datasets is mostly composed of religious terms, The scarcity of data and
the uncommon distribution of language features of this kind of corpus cause high perplexity of the
model, we can see the selector performs far worse on koran dataset than other specialized datasets.
We conduct that for this case, the upstreammachine translation model should be trained on this kind
of corpus and then enhanced by our method.

The selector only uses 3000 sentences to train. In practice, since it is learning and classifying the
distribution of semantics, adding a small amount of new data to the datastore usually does not require
retraining the selector. If necessary, retraining can be done very quickly, which is very beneficial
for quickly updating machine translation applications.

5.2 Different Implementations of Baselines From Previous Works

It can be seen from TABLE 3, that 𝑘NN retrievals only take up a small part of the time in inference
time, one reason is that we do not use too large datastore due to hardware limitations, the other
reason is that we adopt the KNN-BOX framework, which remarkably optimizes the retrieving
performances as the baseline code implementations, rather than comparing the results with the code
of the original 𝑘NN-MT paper. Two-orders slower is reported in that paper, which means 𝑘NN
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retrievals take up almost all the inference time, therefore, based on the code of the original 𝑘NN-
MT, the improvements of metrics such as inference time or tokens per second can be completely
considered as an improvement from their methods, but in our case, we could not do so. Therefore
we measure and compare 𝑘NN overhead times.

5.3 Comments on Our Method

Although the selector performs pretty, there is still room for improvement. The idealized result is
to distinguish all tokens that truly need retrievals and make no futile retrieval. This motivation and
mechanism are clear and explainable, rule-based and statistics-based techniques may help.

Reducing undesired retrievals is a promising research direction for fast 𝑘NN-MT.

Due to unbalanced positive and negative samples, complex and dense latent representations, it is
hard for a simple MLP network to learn strong discrimination, while more complex models take
more time.

These efforts have been applied to further improve the selector, but they do not make a difference.

• Use the probability distribution 𝑝𝑀𝑇 (𝑦𝑖 |x, ŷ1:𝑖−1) given by M as the input of the selector,
which greatly extends the number of parameters of the selector(about 40 times) and does not
work.

• Add more one hidden layer in the selector.

• Train the selector on the train set trying to enhance generalization, but it fails to improve
metrics.

• Use DiceLoss [33], and FocalLoss [34], instead of weighted cross-entropy loss. They cause
more fearful overfitting issues, the selector predicts nearly all the tokens to retrieve.

We do not rule out that the last two points are caused by inappropriate hyper-parameters or lack of
training ticks.

6. CONCLUSION

This paper opens a new idea for faster 𝑘NN-MT. We propose a simple yet effective selector to
reduce redundant retrievals. Experiment results on four benchmark datasets show that the selector
remarkably speeds up other 𝑘NN-MT systems and keeps acceptable translation qualities. The
limitation is that it could not outperform the depending 𝑘NN-MT system in translation quality. We
note that there are methods to dynamically adjust the interpolation coefficient(𝜆) of the probability
distribution between KNN and NMT model based on the token-level confidence produced by the
NMT model [35], and we believe it could be further studied whether this confidence can be used to
assist the decision of whether to perform retrieval. Besides, vector vector quantization and parallel
retrieval techniques on GPU are also important directions for improvement.
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