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Abstract
We present SOccDPT, a memory-efficient approach for 3D semantic occupancy prediction
from monocular image input using dense prediction transformers. To address the limitations
of existing methods trained on structured traffic datasets, we train our model on unstructured
datasets including the Indian Driving Dataset and Bengaluru Driving Dataset. Our semi-
supervised training pipeline allows SOccDPT to learn from datasets with limited labels by
reducing the requirement for manual labeling by substituting it with pseudo-ground truth
labels to produce our Bengaluru Semantic Occupancy Dataset. This broader training en-
hances our model’s ability to handle unstructured traffic scenarios effectively. To overcome
memory limitations during training, we introduce patch-wise training where we select a
subset of parameters to train each epoch, reducing memory usage during auto-grad graph
construction. In the context of unstructured traffic and memory-constrained training and
inference, SOccDPT outperforms existing disparity estimation approaches as shown by the
RMSE score of 9.1473, achieves a semantic segmentation IoU score of 46.02% and operates
at a competitive frequency of 69.47 Hz. We make our code and semantic occupancy dataset
public1.
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1. INTRODUCTION

Autonomous navigation requires 3D semantic understanding of the environment at a high frequency
with a limited compute budget. The field of autonomous driving has shown significant interest in
vision-based 3D scene perception due to its exceptional efficiency and abundant semantic informa-
tion. When it comes to choosing an architecture, works such as [1–4] inspired from ViT [5] have
the domain agnostic learning capabilities of the transformer. The transformer’s versatility comes at
the cost of having no good inductive priors for any domain, requiring large volumes of training data
and a large volume of GPU memory to train. To apply such models on a new domain, we must be

1 https://adityang.github.io/SOccDPT
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Figure 1: Above are a few frames from our Bengaluru Semantic Occupancy Dataset which is an
extension of the Bengaluru Driving Dataset [6]. Each panel consists of the RGB image with 2D
semantic labels on the top left, the disparity map on the bottom left and the 3D semantic occupancy
on the right. The vehicle and pedestrian classes are colored in blue and red respectively. Objects
without classes have been plotted as a height map for the sake of visualization. The vehicle and
its future trajectory have been plotted out in grey and green respectively to aid the reader to have a
better scene understanding.

efficient in making use of transfer learning and pseudo-labeling to solve the ground truth data scale
problem.

In the context of 3D semantic occupancy from monocular vision, ground truth data would refer to
semantically labeled 3D point clouds with corresponding RGB images acquired from a calibrated
camera sensor as shown in FIGURE 1 of our Bengaluru Semantic Occupancy Dataset. While there
exist datasets [7, 8] which have labeled 3D semantic occupancy data in the context of structured
traffic, the unstructured traffic scenarios remain largely underrepresented. It may not be feasible
to gather large volumes of training data considering the fact that LiDAR sensors are expensive
and labeling 3D semantic classes can be tedious. Hence, we make use of a set of teacher mod-
els and boosting techniques inspired from [6, 9–11] to produce labels for depth and semantic on
driving video footage which we use to supervise the training of our model. We train our system
on unstructured driving datasets such as the Indian Driving Dataset [12] and Bengaluru Driving
Dataset [6] to ensure that our system generalizes well. Training such models requires large volume
of GPU memory. We overcome this hurdle with our PatchWise training approach which keeps
the GPU memory in check and this allowed us to explore higher batch sizes without altering the
back-propagation algorithm.

With the goal of designing a model, that is efficient during both training and inference, we propose
SOccDPT and our PatchWise training system. To ensure SOccDPT performs well in unstructured
traffic scenarios, we introduce our pseudo-labeling process to generate our unstructured traffic
dataset. We use a common backbone for image feature extraction and dual heads to extract disparity
and semantic information of the scene. Camera intrinsics are used along with disparity to project
the semantic information into 3D space.
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Figure 2: SOccDPT uses the ViT family for backbone feature extraction which allows us to carefully
balance accuracy and compute requirements. SOccDPT takes an RGB image input of shape 3 ×
256 × 256 produces image features of shape 256x128x128. We then pass the extracted features to
a disparity head and a segmentation head. We apply the Scale and Shift Invariant loss [13] and the
Binary Cross Entropy loss for the disparity and segmentation outputs respectively. With the known
camera intrinsic, we project the semantics into 3D space with the help of the disparity map and
accumulate the semantics into a 3D occupancy grid of size 256 × 256 × 32, thus producing a 3D
semantic map from one backbone

2. RELATEDWORK

Semi-Supervised Learning and Self-Supervised Learning. In the context of disparity esti-
mation, semi-supervised learning has become very important due to the challenges involved in
obtaining accurate depth information in diverse real-world environments. Several self-supervised
algorithms for perceiving depth have been suggested [14–16]. These algorithms offer the advantage
of utilizing only a single camera, making them suitable for easy deployment in real-world scenar-
ios. However, they still face numerous unresolved issues. One such problem is the generation of
disparity maps that lack local and temporal consistency. Watson et al. [16] addressed the temporal
inconsistency by incorporating multiple consecutive frames as input. Another line of research in
semi-supervised learning looks into using the existing model to generate confident annotations on
unlabelled data. Since the degree of disparity is inversely related to depth, as demonstrated in
FIGURE 1, slight variations in disparity for distant objects lead to significant variations in depth.
Consequently, the resulting point clouds exhibit non-uniform resolution, with closer objects repre-
sented by more points compared to those farther away. There are broadly two approaches to the
disparity estimation problem: monocular and stereoscopic.

Monocular and Stereo Disparity Estimation. Diverse neural network architectures, including
variational auto-encoders, convolutional neural networks, generative adversarial networks and re-
current neural networks, have demonstrated their efficacy in tackling the task of depth estimation.
Within this framework, twomethods are commonly employed: monocular, where depth is estimated
from a single input image, and stereoscopic depth estimation, where depth is estimated from a pair
of images provided as input to the system. Monocular approaches such as [13–16] take advantage
of depth cues such as occlusion boundaries, parallel lines and so on to understand the 3D scene.

Bird’s Eye View (BEV) Architectures. Since disparity is inversely proportional to depth, errors in
depth estimation grow quadratically with disparity errors. To address these errors, some approaches
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look to operate in the Bird’s Eye View space which is directly proportional to depth. Obtaining a
top-down view of a scene offers a comprehensive understanding of the surrounding environment,
effectively capturing both static and dynamic elements. BEV architectures, exemplified by [17–
19], generate this top-down map, which can be utilized for path planning purposes. This top
down map is essentially a segmentation map that would highlight the road, non-drivable space,
parking areas, vehicles, pedestrians and so on. The concept of predicting BEV from multiple
camera perspectives has demonstrated performance comparable to LiDAR-centric methods [20, 21].
However, a limitation of this approach is the absence of 3D information about the scene, such as
unclassified objects, potholes, and overhanging obstacles.

3D Occupancy Networks. Difficult to classify 3D obstacles become harder and harder to catch
as the research community and industry chase the long tail of nines. Recent approaches look to
build generic 3D object detection free of ontology by way of 3D Occupancy Networks. Achieving
an effective representation of a 3D scene is a fundamental objective in perceiving 3D environ-
ments. One direct approach involves discretizing the 3D space into voxels within an occupancy
grid [21, 22]. The voxel-based representation is advantageous for capturing intricate 3D structures,
making it suitable for tasks like LiDAR segmentation [21, 23] and 3D scene completion [24, 25]. A
recent method, TPVFormer [26], addresses memory optimization by representing the 3D space as
projections on three orthogonal planes. Despite the significant progress made by these approaches,
they do not specifically tackle the issue of existing dataset biases towards structured traffic.

3. PROPOSEDWORK
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Figure 3: Qualitative results comparing frames in BDD to Midas [27] versions, monodepth [14],
manydepth [16], ZeroDepth [28]. As we can see, all the existing approaches do not address the
diversity that is seen in unstructured traffic

3.1 SOccDPT Architecture

As described in FIGURE 2, SOccDPT uses the Dense Prediction Transformer [4, 27] backbones
to efficiently extract image features. We then use independent heads to produce the disparity and
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segmentation maps. Instead of penalizing the model for generating the output in an inaccurate scale,
we address the issue of arbitrary scale in the disparity map by estimating the scale and shift relative
to the ground truth for every frame. This estimation process involves aligning the prediction with
the ground truth using a least-squares criterion. Once the segmentation and disparity maps are
computed, we make use of the camera intrinsics to project the semantics into 3D space. Consider a
point on the image plane at position (𝑢, 𝑣) with disparity 𝐷 (𝑢, 𝑣) and 2D semantics 𝑆2𝐷 (𝑢, 𝑣). This
point corresponds to the 3D point (𝑥, 𝑦, 𝑧) as shown in FIGURE 1 from which we can assert the 3D
semantics correspondence to be 𝑆3𝐷 (𝑥, 𝑦, 𝑧) ←− 𝑆2𝐷 (𝑢, 𝑣)

(𝑥, 𝑦, 𝑧) = ( 𝑏 · (𝑢 − 𝑜𝑥)
𝐷 (𝑢, 𝑣) ,

𝑏 · 𝑓𝑥 · (𝑣 − 𝑜𝑦)
𝑓𝑦 · 𝐷 (𝑢, 𝑣)

,
𝑏 · 𝑓𝑥
𝐷 (𝑢, 𝑣) ) (1)

In order to train our network, we started off by building a baseline model 𝑉1 which consists of
2 separate backbones, one for disparity and the other for segmentation. This informs us of the
performance of the dense prediction transformer on unstructured traffic datasets. We improve
upon 𝑉1 by having a common backbone in 𝑉2 which lead to optimizations in speed and memory
consumption. This came at the cost of the accuracy of both the segmentation and disparity. This
is due to the fact that the network would be learning the features and intricacies of both the tasks
from scratch simultaneously. To address this, 𝑉3 makes a minor modification to 𝑉2 which allows
us to load in the disparity estimation backbone from 𝑉1. This allows 𝑉3 to have a backbone which
is proficient in the disparity estimation task. When starting from this point, the backbone and
segmentation head only have to learn the task of image segmentation, without making any major
alterations to the existing disparity estimation. This provided an improvement in how much the
model was able to learn with the same data.

3.2 PatchWise Training

Our PatchWise system offers a solution to GPU memory limitations during neural network train-
ing. Instead of updating all weights simultaneously, which can lead to ”out of memory” errors,
PatchWise updates a subset of the model’s weights at a time. This approach enables the training of
larger networks and the use of larger batch sizes on systems with limited GPU memory, although it
increases training time. The implementation details are described in FIGURE 1.

3.3 Pseudo-Ground Truth Labels for Semi-Supervision

The ability of vision-based networks to learn and accurately predict based on image input is limited
by their receptive field and their overall learning capacity (number of parameters). We generate
pseudo-labels using existing disparity estimation and image segmentation models by feeding in
segments of the image which allows the model to focus on smaller regions. This approach trades
compute time for higher accuracy. We augment the Indian Driving Dataset [12] with depth labels
and the Bengaluru Driving Dataset [6] with 2D semantic labels, enhancing their utility for training.
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Algorithm 1: PatchWise
PatchWise (net, train_percentage, train_step);
Input : PyTorch Module net, training percentage train_percentage, training function

train_step
Output: Trained neural network
N← length(net.parameters);
M← round(N × train_percentage);
num_iterations← ⌈N/M⌉;
updated_weights← {};
saved_weights← {};
for index, param in net.parameters do

saved_weights[index]← param;
end
for net_patch_index in range(0, num_iterations) do

start_index← net_patch_index ×M;
end_index← min(start_index +M,N);
train_indices← range(start_index, end_index) for index, param in net.parameters do

param← saved_weights[index];
param.requires_grad← bool(
index ∈ train_indices
);

end
train_step(net);
save_indices← range(start_index, end_index);
for index, param in net.parameters do

if index ∈ save_indices then
updated_weights[index]← param;

end
end

end
for index, param in net.parameters do

param← updated_weights[index];
end
return net;
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(a) Depth Boosting for the Indian Driving Dataset
(b) Semantic Segmentation auto-labeling for the Ben-
galuru Driving Dataset

Figure 4: Auto Labeling. We use Depth Boosting to generate depth labels for the Indian Driving
Dataset. We use Depth Boosting to generate depth labels for the Indian Driving Dataset. We have
the RGB frames on the left, segmentation map in the middle and our depth labels on the right in the
sub-figures. We would like to highlight the detail in the automatically generated disparity maps and
segmentation maps.

Depth Boosting. Monocular depth estimation systems use a lot of the depth cues used by humans
including occlusion boundaries, parallel lines, edges, vanishing points and the shape and size of
objects. Altering the resolution of the image affects the clarity of these depth cues. Taking in-
spiration from the depth boosting techniques [6, 10, 11], we merge the disparity maps from the
various resolutions, we generate a high-resolution disparity map with global consistency. We use
this method to generate disparity labels for the Indian Driving Dataset as shown in FIGURE 4a. The
depth images on the left are colored by inverse depth (or disparity), such that pixels representing
objects closer to the camera are brighter and those representing objects further away are darker.

Semantic Segmentation auto-labeling. To produce high resolution 2D semantic labels, we take
inspiration from PointRend [9]. We take an image as input and produce a coarse intermediate seg-
mentation map using a pre-trained segmentation model. This coarse map is gradually up-sampled
using bi-linear interpolation and only the regions of the resized map with high uncertainty are
refined. The uncertain regions typically include the boundaries of objects. The uncertain region
is refined by a lightweight multi-layered perceptron. Its input is a feature vector that is extracted
through interpolation from the feature maps, which intern has been computed by the base model.
As shown in FIGURE 4b we have auto-labelled vehicles in red and humans in blue.
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Figure 5: While training 𝑆𝑂𝑐𝑐𝐷𝑃𝑇𝑉3 we start with the pre-trained depth backbone. As a result, the
initial disparity metrics (RMSE, a1, a2, a3) are good while the initial IoU score is under 5%. Within
the first few epochs, the IoU score starts growing steadily, and we observe a small spike in the
disparity metrics as the depth head adjusts to the changes made to accommodate the segmentation
head

Model 𝑅𝑀𝑆𝐸↓ 𝑎1↑ 𝑎2↑ 𝑎3↑ 𝐹𝑃𝑆↑ (Hz) 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠↓

𝑀𝑖𝐷𝑎𝑆 𝑆𝑤𝑖𝑛2𝑇 [4] 23.325 0.5944 0.7816 0.8585 82.2656 14.84M
𝑀𝑖𝐷𝑎𝑆 𝐷𝑃𝑇𝐻[27] 21.861 0.5527 0.7712 0.8558 13.4394 123.1M
𝑀𝑖𝐷𝑎𝑆 𝐷𝑃𝑇𝐿[27] 13.36 0.6888 0.8514 0.9192 6.3142 42.3M
𝑀𝑎𝑛𝑦𝑑𝑒𝑝𝑡ℎ[16] 31.3599 0.4508 0.6668 0.7850 20.3578 35.34M
𝑍𝑒𝑟𝑜𝐷𝑒𝑝𝑡ℎ[28] 36.3419 0.3882 0.6552 0.7875 2.363 232.59M
𝑃𝑎𝑐𝑘𝑁𝑒𝑡[29] 50.6722 0.2257 0.4936 0.6870 8.7504 128.29M
𝑆𝑂𝑐𝑐𝐷𝑃𝑇𝑉1 13.3782 0.6854 0.8442 0.9172 39.1141 84.3M
𝑆𝑂𝑐𝑐𝐷𝑃𝑇𝑉2 26.2383 0.4879 0.7181 0.8309 69.6503 42.3M
𝑆𝑂𝑐𝑐𝐷𝑃𝑇𝑉3 12.4075 0.6935 0.8588 0.9265 69.4733 42.3M

Table 1: We compare SOccDPT’s disparity metrics on the Bengaluru Driving Dataset, FPS and
number of parameters with existing approaches. 𝑆𝑂𝑐𝑐𝐷𝑃𝑇𝑉3 outperforms the models in terms of
accuracy while maintaining a high FPS and small model size

4. EXPERIMENTS

4.1 Experimental Setup

We train SOccDPT on a laptop with an Intel i7-12700H (20 threads) and NVIDIA GeForce RTX
3070 Laptop GPU with 8 GB VRAM. With the goal of focusing performance in unstructured
traffic, our network has been trained on the Indian Driving Dataset [12] and the Bengaluru Driving
Dataset [6]. In TABLE 2, we present the set of hyper-parameters which produce optimal results. We
evaluate on the metrics Intersection over Union (IoU), RootMean Squared Error (RMSE), threshold
errors (𝑎1, 𝑎2, 𝑎3). Here, 𝑎𝑖 is the fraction of predictions where the threshold gt/pred or pred/gt is
less than 1.25𝑖.
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Method Dataset Hyperparameters
𝑅𝑀𝑆𝐸↓

𝑎1↑ 𝑎2↑ 𝑎3↑
𝐼𝑜𝑈↑ (%)

BS EP LR 𝛿 < 1.251 𝛿 < 1.252 𝛿 < 1.253

V1 IDD 12* 0.5 0.00001 11.2353 0.7717 0.8991 0.9211 42.48
BDD 12* 0.5 0.00001 13.3782 0.6854 0.8442 0.9172 41.73

V2 IDD 6 0.95 0.00001 27.6473 0.5302 0.7084 0.8134 26.29
BDD 6 0.95 0.00001 26.2383 0.4879 0.7181 0.8309 34.75

V3 IDD 6 0.95 0.0001 9.1473 0.7807 0.9009 0.9416 43.50
BDD 6 0.95 0.0001 12.4075 0.6935 0.8588 0.9265 46.02

Table 2: Ablation Study SOccDPT’s hyper-parameters and the metrics achieved. RMSE, a1, a2,
a3 are disparity metrics and IoU is the segmentation metric. The hyper-parameters are batch size
(BS), Encoder Percentage (EP) and learning rate (LR). Models with a * have had their two heads
and backbones trained separately

4.2 Datasets

We make use of the IDD, BDD and BSOD datasets. The Indian Driving Dataset (IDD) [12] has
a total of about 7974 frames with 6993 and 981 frames for training and testing respectively. The
Bengaluru Driving Dataset (BDD) [6] has a total of about 3629 frames. We split it to have 10% for
testing and the remainder for training. We present our Bengaluru Semantic Occupancy Dataset by
extending BDD with 3D semantic occupancy labels by picking a voxel size of 50 cm and applying
a voting filter to drop the voxels with fewer than 10 points.

4.3 Ablation Study

In TABLE2, we present the set of hyper-parameters for SOccDPT’s𝑉1,𝑉2, and𝑉3. We observe that
𝑉1 produces good disparity and segmentation metrics while also being the largest network in terms
of the number of parameters and the slowest to run as shown in TABLE 1. 𝑆𝑂𝑐𝑐𝐷𝑃𝑇𝑉1 has two
independent backbones which explain the larger number of parameters and increased inference time.
While 𝑆𝑂𝑐𝑐𝐷𝑃𝑇𝑉2 shows an improvement in speed and reduction in the number of parameters, it
takes a performance hit in terms of disparity and segmentation accuracy, as this network is being
trained from scratch. 𝑆𝑂𝑐𝑐𝐷𝑃𝑇𝑉2 introduces the common backbone which reduces the compute
requirements, but since this entire network is being trained from scratch, it has no priors regarding
either semantics or disparity estimation. We introduce this prior into 𝑆𝑂𝑐𝑐𝐷𝑃𝑇𝑉3 by changing
the architecture of 𝑉2 to allow us to load in pre-trained weights from the disparity backbone.
As seen in FIGURE 5, 𝑆𝑂𝑐𝑐𝐷𝑃𝑇𝑉3 starts off with good RMSE scores for disparity estimation
and poor IoU for segmentation, which is as expected. Through the course of training, the IoU
steadily climbs. Initially, we see a spike in RMSE which comes back down over several epochs.
𝑆𝑂𝑐𝑐𝐷𝑃𝑇𝑉3 has similar timing and memory characteristics when compared to 𝑆𝑂𝑐𝑐𝐷𝑃𝑇𝑉2 as it
is only a minor modification that allows us to load in the disparity backbone. But this small change
allows 𝑆𝑂𝑐𝑐𝐷𝑃𝑇𝑉3 to vastly outperform 𝑆𝑂𝑐𝑐𝐷𝑃𝑇𝑉2 without requiring additional training data.

2209



https://www.oajaiml.com/ | May 2024 Aditya Nalgunda Ganesh

4.4 Comparison with Existing Methods

𝑆𝑂𝑐𝑐𝐷𝑃𝑇𝑉3’s performance exceeds existing disparity estimation approaches on unstructured traffic
scenarios presented from the Bengaluru Driving Dataset. As shown in TABLE 1, 𝑆𝑂𝑐𝑐𝐷𝑃𝑇𝑉3
shows the best accuracy in disparity estimation while also maintaining a high FPS and keeping
compute requirements low. As shown in FIGURE 3, our model provides very detailed disparity
maps compared to existing approaches while performing in real-time and keeping memory require-
ments low.

5. CONCLUSIONS

Existing disparity and segmentation approaches have come far, but do not specifically address the
challenge in the autonomous vehicle context in unstructured traffic scenarios. We use depth boosting
and semantic auto-labeling to build a self-supervised training pipeline, which can take videos as in-
put and train a 3D semantic occupancy network. 𝑆𝑂𝑐𝑐𝐷𝑃𝑇 uses a multi-headed Dense Transformer
based architecture to take advantage of this self-supervised pipeline, to learn 3D semantic occupancy
in the context of autonomous navigation in unstructured traffic. Our PatchWise training system
allowed us to explore training with larger batch sizes which would not have been possible with
memory-constrained hardware. These models show potential in their ability to learn 3D semantic
occupancy from monocular vision and operate at real time.
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