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Abstract
This article explores the extension of well-known F1 score used for assessing the perfor-
mance of binary classifiers. We propose the new metric using probabilistic interpretation
of precision, recall, specificity, and negative predictive value. We describe its properties
and compare it to common metrics. Then we demonstrate its behavior in edge cases of the
confusion matrix. Finally, the properties of the metric are tested on binary classifier trained
on the real dataset.
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1. BACKGROUND

The F1 metric – as described by [1], – is commonly used to evaluate the performance of binary
machine learning classifiers. Calculated as a harmonic mean of precision and recall (see section
2) gains an advantage over less complex metrics like accuracy. Especially when used against
imbalanced datasets. The properties of F1 and methods of maximizing the expected metric value,
were precisely described, and analyzed from the theoretical and experimental point of view by [2].

F1 is often criticized as an evaluationmetric. Themain axis of that critique is lack of the dependency
on true negatives - pointed among the others by [3], and [4]. Another of its drawbacks is asymmetry
– it may give different score when the dataset labeling is changed (positives labeled as negatives
and negatives labeled as positives). These facts make it unreliable as a metric in certain cases.

As a cure for these F1 problems – MCC is often pointed to – like presented by
[5]. On the other hand sometimes, researchers prefer to use them both “cooperating” – like [6]. To
this last aspect, we will return later in our article.
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2. COMMONMETRICS

2.1 Basic and Composite Metrics

Let us first list the basic building blocks of which the binary classifier metrics are composed:

• TP - true positives (positive samples classified as positive),

• FN - false negatives (positive samples misclassified as negative),

• TN - true negatives (negative samples classified as negative),

• FP - false positives (negative samples misclassified as positive),

Based on them, the precision and recall (also called sensitivity) metrics were defined:

PREC =
TP

TP + FP

REC =
TP

TP + FN
Then F1 is defined as a harmonic mean of two above:

F1 =
2

1
PREC + 1

REC
=

TP
TP + 1

2 (FP + FN)

We will also use another metric called specificity:

SPEC =
TN

TN + FP
Precision and recall are more popular in machine learning publications, while the medical ones
usually prefer recall and specificity. The latter two are the base components of Youden index (also
known as informedness) defined by [7]:

J = REC + SPEC − 1

We also want to include another metric called - negative predictive value - NPV in this overview:

NPV =
TN

TN + FN
Finally, NPV is a component of markedness (see: [3]):

MK = PREC + NPV − 1

The presented list obviously is not comprehensive - it does not exhaust all the metrics in use.
However, we will focus on them in our discussion.

Summarizing: in the further sections we will be considering the following plain metrics: PREC,
REC, SPEC, NPV, and following composite metrics: F1, J, MK.
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2.2 Matthews Correlation Coefficient

On a separate note, the MCC metric deserves attention. Matthews correlation coefficient known
under several other forms, in its present form defined by [8]. MCC is a Pearson correlation co-
efficient calculated for two binary sequences: the original sample values (positives and negatives)
and the values returned by classifier. In terms of TP, FN, TN, FP values it can be calculated as
follows:

MCC =
TP · TN − FP · FN√

(TP + FP) (TP + FN)(TN + FP)(TN + FN)

3. Probabilistic Approach – Focusing On Conditional Probabilities

The probabilistic interpretation of F1, PREC and REC has been comprehensively presented by [9].
We want to attack the problem from the opposite side and start with the definition of 4 conditional
probabilities which values we want to maximize when designing a binary classifier:

• 𝑃(+ | 𝐶+) – the probability that the sample is positive, provided the classifier result was
positive.

• 𝑃(𝐶+ | +) – the probability that the classifier result will be positive, provided the sample is
positive.

• 𝑃(𝐶− | −) – the probability that the classifier result will be negative, provided the sample is
negative.

• 𝑃(− | 𝐶−) – the probability that the sample is negative, provided the classifier result was
negative.

Given all these conditional probabilities, we can require a valid classifier to produce results for
which each is close to 1. Basing on this requirement, we are building the new metric P4, demanding
it to have the following properties:

1. The metric value is limited to the given range: P4 ∈ [0, 1].

2. When any of the four conditional probabilities tends to zero, P4 metric also tends to zero
regardless of the values of the other probabilities.

3. When all the four conditional probabilities tend to one, P4 metric also tends to one.
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Now let us quantitatively describe each of these probabilities:

𝑃(+ | 𝐶+) = TP
TP + FP

= PREC (1)

𝑃(𝐶+ | +) = TP
TP + FN

= REC (2)

𝑃(𝐶− | −) = TN
TN + FP

= SPEC (3)

𝑃(− | 𝐶−) = TN
TN + FN

= NPV (4)

Coming back to the composite metrics mentioned before: F1 captures only probabilities (1) and (2),
J is based on (2) and (3), while MK depends on (1) and (4). We have not yet met a metric that refers
directly to all four probabilities at once. This fact imposes a certain desire to combine all of them
into a single measure. So, let us finally define P4 as a harmonic mean of all the four conditional
probabilities:

P4 =
4

1
PREC + 1

REC + 1
SPEC + 1

NPV

Thus, we get:

P4 =
4 · TP · TN

4 · TP · TN + (TP + TN) · (FP + FN)

The newly definedP4 metric satisfies all the three requirements we defined above. This is due to the
properties of the harmonic mean. What is more, for the requirements 2 and 3 the inverse implication
is also true:

4. When P4 metric tends to zero, at least one of the conditional probabilities is close to zero.

5. When P4 metric tends to one, all the probabilities are close to one.

P4 is also symmetrical with respect to dataset labels swapping (similarly to the MCC metric), as
opposed to F1 – see appendix A. In the coming sections, we will take a closer look at the newly
defined metric and compare its properties with those of the commonly known metrics.

4. EDGE CASES

4.1 Confusion Matrix

It is essential that when analyzing the performance of a classifier, it should not be considered in
isolation from the population to which it applies. The same classifier used on two populations having
different sample distributions – will lead to the different performance metric values. Therefore, a
convenient way to present the performance of a classifier with respect to a given population is a
confusion matrix:
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Actual positive Actual negative
TP+FN FP+TN

Classified positive
TP + FP TP FP

Classified negative
FN + TN FN TN

We will use the shorten version of confusion matrix, in our demonstration:

C =

[
TP FP
FN TN

]
To show the properties of P4 against other metrics, we will present four examples of confusion
matrices. For each of them, one of the conditional probabilities (1), (2), (3), (4) is close to 0, while
the others are moderately close to 1. In each of the cases presented, we use a simulated classifier
and a population of 10000 samples.

Because some of the metrics presented above, are ranged in [−1, 1] than in [0, 1], we must scale
them first, to compare with the other ones. Thus, we will be using:

MCC′ = (MCC + 1)/2
J′ = (J + 1)/2

MK′ = (MK + 1)/2

4.2 Case 1 - “Alarming Precision’’

This is a classic case in which F1 shines. The population is highly imbalanced in favor of negative
samples. The classifier’s performance on positive samples is 90%, the same on negative ones. Thus,
we have the following confusion matrix:

C1 =

[
45 995
5 8955

]
In this case, the four conditional probabilities are as follows:

Conditional Probability Value
𝑃(+ | 𝐶+) 0.0433
𝑃(𝐶+ | +) 0.9000
𝑃(𝐶− | −) 0.9000
𝑃(− | 𝐶−) 0.9994

And now let us look at how these affect the values of our metrics:
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Metric Value
P4 0.1519
F1 0.0826

MCC′ 0.5924
J′ 0.9000

MK′ 0.5214

We can identify three groups of metrics in the table above:

• “Close to zero” (yellow) group – having two members: P4 and F1.

• “Middle of the range” (white) group – MCC′ and MK′ – still reacting OK on the situation.

• “Ignoring” (red) group – metric J′ – no proper reaction on the low conditional probability:
𝑃(+ | 𝐶+).

4.3 Case 2 - “Alarming Negative Predictive Value’’

This case can be simply obtained from “Case 1” by re-labeling the samples - naming the “positives”
as “negatives” and vice versa. Thus, we have the following confusion matrix:

C2 =

[
8955 5
995 45

]
Probabilities:

Conditional Probability Value
𝑃(+ | 𝐶+) 0.9994
𝑃(𝐶+ | +) 0.9000
𝑃(𝐶− | −) 0.9000
𝑃(− | 𝐶−) 0.0433

That gives the following metric values:

Metric Value
P4 0.1519
F1 0.9471

MCC′ 0.5924
J′ 0.9000

MK′ 0.5214

As we can see, F1 is the only metric that changed its value after the label swap. This clearly shows
the problem with its asymmetry. Contrasting to the previous case, F1 is completely not noticing
one of the key probabilities being close to zero. The other metrics considered have not changed
compared to the “Case 1”.
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4.4 Case 3 - “Alarming Recall’’

This case represents a typical situation when the classifier is over-predicting in favor of negative
results, resulting a particularly superior performance on the negative samples and deficient perfor-
mance on the positive samples. The population contains 10% positive samples. So, there we have
the confusion matrix:

C3 =

[
50 9
950 8991

]
Conditional probabilities:

Conditional Probability Value
𝑃(+ | 𝐶+) 0.8475
𝑃(𝐶+ | +) 0.0500
𝑃(𝐶− | −) 0.9990
𝑃(− | 𝐶−) 0.9044

Values of the metrics:

Metric Value
P4 0.1718
F1 0.0944

MCC′ 0.5960
J′ 0.5245

MK′ 0.8759

As we see F1 is back in the league. MCC′ and J′ playing well. And a red card is given to a player
of the visiting team: MK′.

4.5 Case 4 - “Alarming Specificity’’

The last case represents the inversion of “Case 3”. The classifier over-predicts in favor of positive
results – having particularly superior performance on positive results and deficient performance on
the negative ones. The population contains 10% negative samples. So, let us look at the confusion
matrix, probabilities, and the metrics:

C4 =

[
8991 950

9 50

]
Conditional Probability Value

𝑃(+ | 𝐶+) 0.9044
𝑃(𝐶+ | +) 0.9990
𝑃(𝐶− | −) 0.0500
𝑃(− | 𝐶−) 0.8475
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Metric Value
P4 0.1718
F1 0.9494

MCC′ 0.5960
J′ 0.5245

MK′ 0.8759

MK′ again occupies the “red” group, this time together with F1 as a companion. P4 obviously –
works as designed.

4.6 Summary

As we have seen in the four edge cases: none of the considered, existing so far compound metrics
(F1, J, MK), guarantees correct behavior in all of them. MCC as a correlation coefficient here
represents a separate category and stands out positively against its background. And even though
it does not reach values near its minimum in edge cases, its performance should still be considered
satisfactory.

What is not surprising, however, is the behavior of the newly defined P4 metric itself – it reaches
a correspondingly low value every time, and this is due to the very assumptions on which it was
based.

5. P4 COMPARED TO OTHER METRICS

In the following subsections we will again compare P4 against four traditional metrics: MCC, F1,
J and MK. This time, covering quasi-continuous range of cases. As in previous cases, we use a
simulated classifier and a fixed population size of 10000.

5.1 Metrics vs Population Balance

In the experiment we fixed the following parameters:

• The ratio of true positives to the actual positives (TPR – true positive rate) is fixed and equals
0.1.

• The ratio of true negatives to the actual negatives (TNR – true negative rate) is fixed and
equals 0.1.

Thus, using our rather poor “classifier”, we are observing how the values of each metric change as
a function of: actual positives to population size ratio. The result can be seen on the charts below:
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On the left chart, attention is drawn to the symmetrical shape determined by MCC′ and P4 curves,
while F1 follows its own path. On the right chart we have a similar symmetrical shape as in
the previous one, but this time P4 is accompanied by MK′. Youden index is not sensitive to the
population balance change. The example presented here is distant from the results obtained from
the classifiers encountered on a daily basis but has the advantage of capturing differences between
the metrics studied.

5.2 Metrics vs True Positive Rate

Let us see a bit more realistic example now. The following parameters are fixed now:

• The ratio of true negatives to the actual negatives is fixed and equals 0.8.

• The ratio of actual positives to the population size is also fixed and equals 0.95.

Then we are observing how the metric changes as a function of TPR (true positive rate).
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In this case, the course of P4 and MCC′ metrics is similar in nature, however for the first half of
TPR’s range the difference between them is roughly ≈ 0.3. They reach full agreement at the end of
the plot. At this point the difference between them and F1 equals 0.05 – which is actual negatives
to the population size ratio.

5.3 Summary

The charts presented here do not exhaust all the relationships between the metrics being discussed.
Many of the aspects are left undiscussed due to the short form of this paper. We are also not analyzing
the base building blocks of the composite metrics: PREC, REC, SPEC, NPV, because the results
they give are simpler than the presented ones. The analysis of accuracy is skipped because of the
same reason. The following conclusions can be drawn from the charts:

• P4 and MCC behave differently in extreme case, however they tend to behave similarly in the
more real-world case.

• F1 is oversimplified compared with P4 and MCC.

• J′ behaves linear in presented cases
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6. P4 METRIC IN USE

To demonstrate the properties and usefulness of P4, we will check how it behaves on a real dataset.
To achieve this goal the technique derived from the “Receiver operating characteristic” method will
be used.

We will use well-known Breast Cancer Wisconsin dataset provided by UCI Machine Learning
Repository (http://archive.ics.uci.edu/ml), with a help of Scikit-Learn package – [10]. It’s a set
consisting of 569 samples, 30 dimensions. The samples contain various characteristics of biological
cell nuclei (radius, texture, symmetry etc.) and the cancer binary classification: malignant/benign.

6.1 Receiver Operating Characteristic

“Receiver operating characteristic” (ROC) - is commonly used technique for assessing the trade-
off between recall and specificity. It’s used together with the classifiers that, as a result – give a
probability of being positive for the sample – like for example logistic regression. To obtain an
answer “positive”/”negative”, we must decide on a specific probability threshold 𝜏 above which we
consider the sample positive. Using ROC technique – we are starting from 𝜏0 = 0 and iterating,
increasing it by Δ𝜏 until 𝜏𝑛 = 1 is reached. For each 𝜏𝑖 we calculate confusion matrix Ci and thus
the precision-recall pair. Then we plot the curve on the REC vs SPEC chart. That plot gives us an
insight into the characteristic of the classifier-dataset pair and allows choosing optimal 𝜏 threshold.

This method has been creatively adapted by [6]. Instead of precision-recall pair, MCC-F1 pair has
been used in their case, allowing more unambiguous result and easier selection of the optimum.

6.2 MCC-F1 and MCC-P4 Curves

We will use the same technique as mentioned above but also including the P4 metric in place of F1
– comparing two curves: MCC-F1 and MCC-P4. We chose the Support Vector Machine classifier
with probabilistic output (see [11, 12]) and the Gaussian kernel. The result – two ROC-like curves
– can be seen in the chart below:
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The resulting graphs are similar in both cases, however for P4 the curve has a smaller opening
angle. The critical section is captured in the close-up on the graph to the right. The curves give
different optimal threshold values: 𝜏 = 0.52 for MCC-P4 curve and 𝜏 = 0.45 for MCC-F1.
From the perspective of this single experiment – the behavior of P4 metric is as expected. The
difference between the two results, is since P4 includes two additional components comparing to
F1 – conditional probabilities: 𝑃(𝐶− | −) and 𝑃(− | 𝐶−).

7. CONCLUSIONS

The definition of the new P4 metric presented, broadens the range of available tools for evaluating
binary classifiers. It represents one step further in the direction indicated by F1. The main advan-
tages of P4 are that it zeroes out when at least one of the key four conditional probabilities also
zeroes out, and that reaching a value close to 1 requires that all four probabilities also go to 1.

We realize that evaluating the performance of binary classifiers is a complex problem, andwe cannot
expect a single metric to be the ultimate gold standard here. Some situations may require that
selected conditional probabilities be considered more significant than others. And this, in turn, will
require the development of weights like those known from F𝛽.

The key differences betweenP4 andMCC are a different probabilistic interpretation and a guarantee
that P4 will zero out under certain conditions. Finally, their values belong to other ranges: MCC ∈
[−1, 1] and P4 ∈ [0, 1]. The last one may be perceived as a little easier to interpret. Despite these
facts, P4 appears to be much closer to MCC than the other composite metrics. In a situation when
one uses the F1 however, we can frankly recommend its replacement with the P4.
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Appendix A. Symmetry

In this appendix, we will prove the symmetry of P4 with respect to dataset labels swapping. By
label swapping we mean renaming labels from positives to negatives and vice versa.

1. P4 is defined as the harmonic mean of PREC, REC, SPEC and NPV.

2. Harmonic mean is a commutative operation.

3. Dataset label swapping causes the following changes to the confusion matrix:

(a) TP becomes TN
(b) TN becomes TP
(c) FP becomes FN
(d) FN becomes FP

4. After this changes to the confusion matrix: PREC becomesNPV, NPV becomesPREC (see
definitions in section 2).

5. Similarly, REC becomes SPEC, SPEC becomes REC

6. Swapping the order of the arguments of the harmonic mean does not change its value (see
point 2) – what ends the proof.
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