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Abstract
Machine learning (ML) reproducibility needs to be informed with reliable evaluation mea-
sures. However, routine image classification is evaluated using metrics that are highly sen-
sitive to class prevalence. Consequently, the reproducibility of ML models remains unclear
due to class imbalance-induced noise. We suggest regularly using class imbalance-resistant
evaluation metrics, including balanced accuracy, area under precision-recall curve, and im-
age classification efficacy, for the evaluation of the reproducibility of ML models. Each
of these evaluation metrics is conceptually consistent with and logically complements the
others, and their joint use can help explain different aspects of classification performance at
the whole-class level and individual class level. These metrics can be used for the validation,
testing, and/or transfer of ML classifiers. Comprehensive analysis using these metrics as a
routine approach strengthens the reproducibility of ML models.
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1. CHALLENGES

Image classification (also known as semantic segmentation) is implemented in a variety of fields,
ranging from molecular imaging to earth observation. Machine learning (ML) algorithm makes
automated image classification of new datasets possible, especiallywhen the new data to be analyzed
is collected using the same types of sensors and if it covers the same types of objects as those used
to train the original model [1]. If an ML model is reproducible, it can be used by an independent
group to obtain ‘the same result’ using their own datasets [2]. The reproducibility crisis of ML
models remains, however, a crucial concern [3-5]. As to image classification, because no two
images are identical due to data variation (e.g., pixel and radiometric resolution), object variation
(e.g., contrast and color), and variation in scale and extent trained ML model does not produce
identical results when new image data are classified. Instead, ML reproducibility is a function of
the variation in the accuracy of image classification [6-8]. Specifically, when a trained model is used
for classifying two or more image datasets, its reproducibility level is expressed by the changes in
classification accuracy: the smaller the accuracy variation, the greater a model’s reproducibility
[6]. This argument is valid if accuracy information perfectly reflects the classifier’s discriminative
power irrespective of data and object variation.

There are dozens of metrics available for classification evaluation. The most used metrics include
precision, recall, F score (also known as F-measure), intersection over union (IoU), and/or accuracy
[1,4,7,8] (FIGURE 1). The use of one or more evaluation metrics is essential, but the practice is
not consistent because (1) there is no standard for the choice of accuracy metrics within a field,
(2) the terminology and choice of evaluation metrics vary among fields, and (3) most evaluation
metrics are sensitive to class sizes or their distribution, a phenomenon known as the class imbalance
effect [9]. In brief, at the whole-class level, overall accuracy (or simply accuracy) is likely high
when class distributions are uneven; at the class level, accuracy tends to increase with class size
[10]. The overestimated accuracy as the result of the class imbalance effect contributes to the so-
called ‘AI chasm’ in digital medicine [11,12], meaning that high accuracy does not ensure clinically
meaningful outcomes. At the class level, as indicated by a hypothetical example in FIGURE 2, the
value of F score or IoU for a majority class (> 90%) can be 2-3 times of that for a minority class
(< 10%) when map-level accuracy remains the same. Such a case is not the worst when compared
with many real-world AI applications in classifying imbalanced data [13].

In addition, machine learning classifiers normally underestimate the probability of a rare class
[14,15]. Problems that arise when there are differences in class proportion between lab-controlled
and real-world classifications confuse and complicate the judgement of ML reproducibility for
image classification. Because the performance of a weak classifier can be obscured by a high
accuracy value (the reverse is true, too), research into the class imbalance problem in AI-based
classification has been extensive [6,10,13-18]. In contrast, the problem of the class imbalance effect
on classification evaluation has received scant attention [7,10,19].
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Figure 1: Confusion matrix of binary classification and the formulas of selected evaluation metrics,
including image classification efficacy (ICE).

Figure 2: Comparison of class-level evaluation metrics: their ratios of major class over minor when
map-level accuracy remains 90% and classification errors are symmetric.
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2. A THEORETICAL PERSPECTIVE

Mathematically, ML reproducibility for image classification can be expressed as:

𝑠2
𝑡 = 𝑠2

𝑑 + 𝑠2
𝑐 (1)

where 𝑠2
𝑡 is a total evaluation metric variance as the indicator of ML reproducibility, 𝑠2

𝑑 is the
variance of the metric of a classifier’s discriminative power, where variance is due to changes in
data and object features, and 𝑠2

𝑐 is the variance of the metric of class prevalence, where variance is
due to changes in image scale, extent, and/or location.

Equation 1 implies that a decrease in the variance of the metrics for discriminative power and class
prevalence will result in an increase in ML reproducibility for image classification. The term 𝑠2

𝑑

provides information about ML reproducibility, whereas 𝑠2
𝑐 includes the noise caused by the class

imbalance effect. Both terms are embedded in evaluation metrics that are sensitive to the class
imbalance effect. As explained above, the class imbalance effect is so great that the term 𝑠2

𝑐 can
strongly influence the magnitude of 𝑠2

𝑡 . Because the contribution of 𝑠2
𝑐 is inseparable from 𝑠2

𝑑 , a
practically feasible and effective approach to minimize 𝑠2

𝑐 is to regularly employ class imbalance-
resistant metrics for classification evaluation.

3. RECOMMENDATIONS

For image classification evaluation, balanced accuracy (the arithmetic mean of sensitivity and speci-
ficity), area under precision-recall curve (AUPRC), and image classification efficacy (ICE) are the
most effective metrics to reduce the class imbalance effect [19]. Balanced accuracy is a whole-level
metric. AUPRC is used for evaluating positive-class classification performance ofMLmodels under
a range of decision probability thresholds. For this reason, precision-recall curve cannot be plotted
with a single confusion matrix. The metrics of ICE are map-level ICE (MICE) and class-level ICE;
both can be derived from individual confusion matrices (FIGURE 1) (TABLE 1).

Given a confusion matrix with skewed class distribution: 𝑇𝑃, 𝐹𝑃, 𝐹𝑁, and 𝑇𝑁 , the class pro-
portions are 𝑛𝑝 = 𝑇𝑃 + 𝐹𝑁 and 𝑛𝑛 = 𝐹𝑃 + 𝑇𝑁 (FIGURE 1). Assuming the false positive
rate and false negative rate remain unchanged, by dividing each element in the positive column
with 𝑛𝑝 and dividing each element in the native column with 𝑛𝑛, we can obtain an equal class
proportion: 𝑛′𝑝 = 𝑛′𝑛 = 1. From the new confusion matrix with even class distribution, the accuracy
is 𝐴′ = (𝑇𝑃′ + 𝑇𝑁 ′) /

(
𝑛′𝑝 + 𝑛′𝑛

)
=

(
𝑇𝑃/𝑛𝑝 + 𝑇𝑁/𝑛𝑛

)
/2 = ( sensitivity + specificity )/2. This

reasoning explains why balanced accuracy is resistant to the class imbalanced effect.

The precision-recall curve is often recommended to reduce the class imbalance effect [20,21], be-
cause AUPRC can incorporate the random classification baseline, defined as 𝑛𝑝/𝑛. The principle of
ICE is rooted in the methodology of medical efficacy, an operational metric in the field of medicine.
ICE and AUPRC include the same random classification baseline [19], so their evaluations are
consistent in principle. The two metrics are complementary because they can be implemented
at different stages of ML model’s development. One advantage of ICE metrics (over AUPRC)
is that they are derived from a single confusion matrix in the same way as other simple metrics,
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and ICE metrics can be implemented at the whole-class and individual-class levels (FIGURE 1)
(TABLE 1). As illustrated in FIGURE 2, class-level ICE values can remain unchanged with the
changes in class proportions. AUPRC and ICE are easily interpretable; if their value is equal to
or below zero, the discriminative power of the ML model is not better than random guess. ICE
values are lower than corresponding accuracy values because ICE values deduct the contribution
from random factors that are proportional to class prevalence [19]; in this way, ICE metrics can
reduce the class imbalance effect on image classification performance. Therefore, using these
evaluation metrics together as a standardized approach strengthens the evaluation of discriminative
power and classification reproducibility of ML models. Routine reporting of these metrics will
improve consistent communication on the reliability of ML models, especially between ML model
developers and users.

Table 1: Three evaluation metrics suitable for evaluating ML-based image classification.

Suitability Balanced
Accuracy

Area under
Precision-

Recall Curve

Image
Classification

Efficacy

Whole-class or individual-class? Whole Classes Class Level Both
One or more confusion matrices required? One Multiple One

What is interpretability? Accuracy
Alternative

Model
Performance

Classification
Efficacy

Is baseline classification incorporated? No Should be Yes
Can be used as a loss function? No No Yes
Can be used for validation? Yes Yes Yes
Can be used for testing and/or transfer? Yes No Yes
Can explain positive class error level? No Yes Yes
Can explain negative class error level? No No Yes

What is computation consideration? None Imposing
Baseline

Population
Matrix
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