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Abstract
During emergencies, ambulances on city streets face delays due to traffic obstacles. This pa-
per addresses two efficient emergency vehicle detection (EVD) methods for restricted hard-
ware implementation considering noisy conditions: a symbolic processing-based algorithm
and a convolutional neural network (CNN) model, both of which utilize Mel spectrogram
representations of Hi-Lo siren audio records. The symbolic method employs regular expres-
sions and acceptance criteria to process text-pattern features extracted from spectrograms,
offering a self-explanatory, easily tunable, and resource-efficient solution suitable for low-
cost hardware platforms. On the other hand, the CNN model directly processes spectrogram
representations, leveraging spatial correlation for classification with a streamlined architec-
ture consisting of very few layers. The experimental results demonstrate that both approaches
achieve high accuracy (97-98%) in classifying Hi-Lo sirens, with the CNN model exhibiting
slightly better performance. Challenges such as signal noise and harmonics are addressed
through iterative algorithms and signal reconstruction considerations. Future directions in-
clude identifying additional siren effects and conducting performance measurements on con-
strained hardware devices. Overall, this study presents viable EVD solutions suitable for
real-time implementation and underscores the importance of adaptable and explainable AI
methods in enhancing road safety.

Keywords: Emergency vehicle detection (EVD), Signal symbolization, Spectral signal
processing, Convolutional neural network, Sound classification.
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1. INTRODUCTION

Sirens, such as police cars, fire trucks, or ambulances, are devices that emit alerts or warning sounds
as part of an emergency vehicle (EV) operation. In emergency situations, these sirens draw attention
and warn nearby drivers and pedestrians about the presence of an EV that requires immediate right-
of-way clearance. The latest advancements in automotive technology have increased the availability
of advanced driver assistance systems (ADASs) as part of modern cognitive cars [1]. Consequently,
there is a compelling opportunity to explore the development of an emergency vehicle detection
(EVD) module to aid drivers by automatically adjusting the volume of their music player, activating
hazard lights, and/or alerting them to cooperate more effectively in promptly clearing the path for
emergency vehicles . Such innovation facilitates the swift and safe passage of emergency vehicles to
their destinations. Various EV siren effects convey distinct codes and levels of urgency, contributing
to effective emergency signaling. Among the most prevalent siren effects are Hi-Lo, yelp, and
wail. The choice of siren sound depends on the type of emergency vehicle and protocol, local
regulations, and the intended purpose of the alarm. Two-tone or Hi-Lo sirens are commonly used in
emergency vehicles worldwide, but no universal regulation exists. ISO 7010/7731 [2], established
an emergency frequency range recommendation from 500 Hz to 2,500 Hz. Other specifications and
standards for emergency vehicle sirens may vary between countries and regions, reflecting diverse
regulatory frameworks and safety considerations, such as the American SAE J1849, EuropeanNorm
EN 4713-2, Canadian CSA-D250, Japanese MLIT regulations, and Mexican NOM-034-SSA3-
2013.

This paper introduces two emergency vehicle detection (EVD) methods that were designed to meet
key requirements and challenges: a) providing an interpretable and portable model; b) offering
a lower memory footprint than CNN models; and c) enabling stand-alone on-device execution.
These requirements are crucial for supporting constrained, low-cost hardware–embedded devices,
i.e. edge computing. Although benchmark results have been obtained, they are currently limited
solely to classification accuracy metrics and do not include any performance metrics.

2. RELATEDWORKS

A feature extraction algorithm was presented in [3], which detects emergency vehicles through the
identification of their dominant tones (pitch detection) by applying the module difference function
(MDF) technique and searching for peaks of each tone to detect Hi-Lo siren patterns over time.
Several deep neural network EVDmodels have been proposed [4–10], including the fully connected
network model (FCN), convolutional network (CNN), and recurrent network (RNN), which directly
process raw audio signals; others, such as [11], which use Mel frequency cepstral coefficients
(MFCCs). Spectral analysis using fast Fourier transform (FFT) was utilized in [12], to identify
sirens and attempt to estimate the distance to an EV. In [13], a comparison was made between
the CNN models AlexNet and GoogleNet using three different representations for input audio: a
frequency spectrogram, an MFCC, and cross-recurrence plots (CRPs). Additionally, time series
analysis involving cross-correlation of two signal sequences can be employedwithmoderate success
in finding their similarity by measuring their relative displacement [14]. Finally, symbolic analysis
of time series to identify features of interest was applied in [15], to provide an explainable model
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Figure 1: Method of developing the EVD symbolic and neural models.

[16], using probabilistic finite state automata and through the SAX technique [17, 18], in which
signal segments are mapped as symbols based on their normal distributions.

3. METHOD

This section introduces the proposal for detecting two–tone sirens. The method, as shown in Figure
1, starts with an introduction to the dataset preparation and preprocessing, followed by the presen-
tation of both classification (detection) methods and its comparative study.

3.1 Dataset Preparation and Preprocessing

The dataset was compiled by selecting audio from: a) ESC-50, a dataset with 50 different urban
sound classes [19]; b) the UrbanSound8k (US8K) dataset [20]; and c) the Large Scale Audio Dataset
(LSAD) [21]. The curated audio collection only includes Hi-Lo sirens because the detectors are
designed for this specific siren type. Based on the literature analyzed in [4–15], empirical testing,
and the feasibility of feature analysis, it has been determined that using a 3-second audio duration
with a uniform sampling rate and resolution are suitable audio parameter settings. Therefore, all the
audio files were preprocessed to ensure that these attributes were met. A total of 381 Hi-Lo siren
audios and 840 urban sounds met these criteria and were selected for the training, validation, and
testing of both the symbolic and the machine learning audio classifiers (TABLE 1).

Table 1: Training, validation and testing datasets.

Classes Train Validation Test Total
Hi-Lo siren 300 29 52 381
Urban sound 510 50 280 840
Subtotal 814 79 332 1,221
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The sound dataset undergoes preprocessing by converting the records to the lowest common dataset
audio settings, which is a single-channel format with a 44.1 kHz sampling rate, 16-bit resolution,
uncompressed raw audio format, and a duration of 3 seconds that corresponds to signals 𝑥(𝑛) for
𝑛 = 0, 1, . . . , 𝑁 −1; with 𝑁 = 15, 360. Subsequently, the audio data representation was transformed
into spectrograms, transitioning from the time domain, denoted as 𝑡, to the frequency domain, rep-
resented by 𝜔. A collection of subsignal spectrograms was obtained, each covering a time window
of size 𝑇 = 1024. A time shift of 𝑃 = 320 samples was applied between consecutive subsignals to
obtain a log-Mel spectrogram, defined as the magnitude of the Discrete Fourier Transform (DFT)
of each subsignal resulting from shifting the window function over the signal [22]:

𝑀 (𝜔, 𝑡) = log ∥DFT{𝑥(𝑛) ⊙ ℎ(𝑡𝑃 − 𝑛)}∥, (1)

where ⊙ denotes the pointwise product; ℎ(𝑛) is a smooth window function with a support interval
(the region where it takes nonzero values) of length𝑇 and with ℎ(0) = ℎ(𝑇−1) → 0. The following
Hann window function was selected:

ℎ(𝑛) =
{
sin2 (

𝜋 𝑛
𝑇

)
0 ≤ 𝑛 < 𝑇,

0 otherwise. (2)

Since human perception of frequencies is not linear (pitch perception), it is preferred to change from
the frequency scale from Hertz 𝜔 to Mels 𝑓 with:

𝑓 = 1125 log[1 + 𝜔/700] . (3)

For the experiments, according to the Nyquist rate > 2( 𝑓𝑎+ 𝑓 ℎ𝑖𝑅5
), a mel-sampling rate of 5120Hz and

64 mel-bands were chosen for the Librosa routine [23]. FIGURE 2 depicts the log-Mel spectrogram
of two Hi-Lo siren audios, where the y-axis corresponds to the windowed DFT log-magnitude (dB).
Note that the temporal maxima of the spectrogram exhibit a clear correspondence with the high and
low tones of the sirens. The spectrogram on the right depicts harmonics that may correspond to
square-shaped waves. This visual analysis of the data led us to implement two detection methods,
one based on symbolic processing of the spectrogram response and another based on a convolutional
neural network (CNN) for classifying spectrogram images, as detailed below.

Figure 2: Hi-Lo siren log-Mel spectrograms: a) faded signal; b) high-harmonic spectrum.
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Figure 3: Hi-Lo siren audio features 𝑅𝑖.

3.2 Symbolic Processing-Based Method

Feature Analysis. Through iterative algorithm refinement and empirical analysis, as summarized
in FIGURE 3, and further detailed in [24], the following siren signal features were defined:

• 𝑅0: minimum zero RMS rate, fast signal-to-noise ratio measure (SNR)
• 𝑅1: frequency range 𝑓𝑎 − 𝑓𝑏
• 𝑅2: dominant frequency threshold
• 𝑅3: presence of Hi-Lo tones
• 𝑅4: tonal gap 𝑓𝑎 − 𝑓𝑏
• 𝑅5: variability in Hi-Lo tone frequency 𝑓 ℎ𝑖𝑅5

, 𝑓 𝑙𝑜𝑅5
• 𝑅6: maximum discontinuity for Hi-Lo tones
• 𝑅7: minimum expected periodicity
• 𝑅8: expected pattern of periodic regularity

Symbolic spectral analysis of the EVD algorithm. The signal features 𝑅𝑖 can be understood as
a set of features computed from the input signal. Then, we can define a Boolean subcriterion 𝐶𝑖

associated with each feature 𝑅𝑖 as follows: 𝐶𝑖 = {False : 𝑖 𝑓 𝑅𝑖 = ∅; True : otherwise} to define a
simpler and more straightforward model using only the following single detection criterion 𝐷:

𝐷 =
8∧
𝑖=0

𝐶𝑖 . (4)

This approach offers the following advantages: high efficiency (stops upon any subcriterion failure)
and robust parallelism (simultaneous subcriterion execution). Unfortunately, this model is impracti-
cal due to signal noise and harmonics, and a more complex iterative EVD algorithm, which is based
on obtaining and processing a sequence of symbolic feature candidates, is needed, as represented in
pseudo-code below:

1. Read audio signal and computation of the log-Mel spectrogram.
2. Test 𝐶0, if it fails, exits (unable to detect, SNR below 𝑅0).
3. For 𝐶1, a 𝑓𝑎 − 𝑓𝑏 bandpass filter is applied according to 𝑅1.
4. 𝑐𝐸𝑛𝑐𝑜𝑑𝑒𝑟1: Binarized filtered spectrogram based on 𝐶2 verifying 𝑅2.
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5. Find the dominant frequency candidates for each spectrogram frame.
6. candidates = list of the dominant frequencies.
7. End and return false if there are no Hi-Lo tones (𝐶3).
8. Detection best candidates loop (up to four harmonic-finder cycles):

8.1. Select Hi-Lo tones with higher counts.
8.2. Satisfy criterion 𝐶4; if it fails, the most frequent tone and cycle are removed.
8.3. 𝑐𝐸𝑛𝑐𝑜𝑑𝑒𝑟2: encodes the respecting criterion 𝐶5.
8.4. Reconstruct signal using 𝐶4 and 𝐶6; signal unchanged if the previous criteria fail.
8.5. If the𝐶5 and𝐶7 criteria fail, the higher harmonics are removed, and the cycle is repeated.
8.6. 𝑐𝐸𝑛𝑐𝑜𝑑𝑒𝑟3: 𝐶6, 𝐶7 and 𝐶8 are applied, if they fail, cycle. If met, stop returning true.

9. After the end of the cycle, the algorithm returns false.

The most meaningful signal transformations are explained below using some examples. After
processing the audio to derive the log-Mel spectrogram (FIGURE 2), given the highest ( 𝑓𝑎) and
lowest ( 𝑓𝑏) tone frequencies, the 𝑓𝑎 − 𝑓𝑏 frequency band is filtered using the expression:

𝐶1 = {𝑀 ( 𝑓 , 𝑡) | 𝑓𝑎 ≤ 𝑓 ≤ 𝑓𝑏} (5)

The first signal symbolization, via 𝑐𝐸𝑛𝑐𝑜𝑑𝑒𝑟1, transforms the audio intensity levels (dB) inside the
frequency range 𝑓𝑎 − 𝑓𝑏 (Hz) into binary digits (0,1), according to:

𝑐𝐸𝑛𝑐𝑜𝑑𝑒𝑟1 =

{
1, if | 𝑓 | > dB𝑚𝑖𝑛 where 𝑓 ∈ 𝐶1

0, otherwise.
(6)

The next symbolization transformation is performed by using 𝑐𝐸𝑛𝑐𝑜𝑑𝑒𝑟2, where the following
symbol Σ alphabet is considered:

𝜎 = {a,b,-} (7)

The terminal symbol 'a' represents a high tone, the symbol 'b' represents a low tone, and the
symbol '-' encompasses any value outside each tonal range of interest (𝑅5), as shown in FIGURE
3, where 𝑐𝐸𝑛𝑐𝑜𝑑𝑒𝑟2 applies the following expression:

𝑐𝐸𝑛𝑐𝑜𝑑𝑒𝑟2 =


𝑎, if 𝑓 ∈ 𝑓 ℎ𝑖𝑅5

𝑏, if 𝑓 ∈ 𝑓 𝑙𝑜𝑅5

−, otherwise.
(8)

After identifying the histogram with dominant frequencies (𝑅2), selecting candidates for Hi-Lo
tones (𝑅3), and confirming that these tones meet 𝑅4, a sequence of tones is obtained (candidates),
e.g. 'aabbaabb' sequence may indicate the presence of a Hi-Lo siren consisting of two full cycles.
However, due to sampling errors such as noise, latency, and conversion issues, it may be necessary
at times to reconstruct the signal considering the following discontinuity cases (𝑅6):

𝐶6 = a-a|a--a|b-b|b--b (9)
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When reconstructing the signal (step 8.4), for example, a given tone discontinuity such as 'aaa-a',
or 'b-bb', as shown in FIGURE 3, may be reconstructed as 'aaaaabbbb', that is, a full siren cycle;
thus, the ability to detect a Hi-Lo siren requires verifying the minimum periodicity (𝑅7) established
by the following regular expression:

𝐶7 = (a+b+)+. (10)

However, this expression does not guarantee compliance with the periodic regularity criterion (𝑅8);
that is, both tones must be adjusted to a certain periodic range (𝑇𝑠1 � 𝑇𝑠2 in FIGURE 3) since there
may be slight variations due to noise, precision, temperature or incomplete signal cycles (clipping).
To carry out this analysis, it is necessary to symbolize the signal again using 𝑐𝐸𝑛𝑐𝑜𝑑𝑒𝑟3 according
to the following format:

𝑐𝐸𝑛𝑐𝑜𝑑𝑒𝑟3 = [ab-]\d+. (11)

For example, at the beginning of step 8.6, given the sequence 'aaabbaabbaab', the output of
𝑐𝐸𝑛𝑐𝑜𝑑𝑒𝑟3’s will be 'a3b2a4b3a4b3'. After this step, the tone occurrences are sorted, that is,
𝐿ℎ𝑖 = [4, 4, 3] and 𝐿𝑙𝑜 = [3, 3, 2]. Then the median 𝜇 of each sorted list is calculated using:

𝐿′
𝑖 = [𝑥 : 𝑥 = 𝜇𝑖 , 𝑥 ∈ 𝐿𝑖] and 𝑖 ∈ {ℎ𝑖, 𝑙𝑜} (12)

In the example, this corresponds to 𝐿′
ℎ𝑖 = [4, 4] and 𝐿′

𝑙𝑜 = [3, 3]. Finally, the acceptance criterion
for periodic regularity 𝑅8, from experimental testing, requires at least two cycles, i.e. a4b3a4b3:

𝐶8 = (♯𝐿′
𝑙𝑜 ≥ 2) ∧ (♯𝐿′

ℎ𝑖 ≥ 2). (13)

where ♯ denotes length or cardinality, 𝐿′
ℎ𝑖 are symbol a occurrences, and 𝐿′

𝑙𝑜 symbol b occurrences.

In summary, after all the (𝐶𝑖) criteria are satisfied, the detection algorithm considers that identifying
a Hi-Lo siren was successful; otherwise, the identification algorithm stops being executed at any
given point at which a criterion is not met.

Adjusting and validating the symbolic processing algorithm. For this symbolic EVD algorithm,
several parameter adjustments were performed after a series of successive refinements over the
corresponding benchmark test siren audio and urban sound datasets (TABLE 1). The following
operating parameters were established [24]: 𝑅0 : 40%; 𝑅1 : 𝑓𝑎 = 1, 500𝐻𝑧, 𝑓𝑏 = 700𝐻𝑧; 𝑅2 :
𝑑𝐵𝑚𝑖𝑛 = 20𝑑𝐵; 𝑅4 : 𝑔𝑎𝑝 = 122𝐻𝑧; 𝑓 ℎ𝑖𝑅5

= 𝑓 𝑙𝑜𝑅5
= 31𝐻𝑧; 𝑅6 : 2𝑐𝑦𝑐𝑙𝑒𝑠 @ 𝑑𝑢𝑟3𝑠𝑒𝑐𝑠; 𝑅7 : 2 𝑓 𝑟𝑎𝑚𝑒𝑠.

3.3 Convolutional Neural Network for Siren Detection

The proposed approach uses a convolutional neural network (CNN) as the classifier model. The
network must be simple so that it can be implemented on limited hardware. From the visual
examination of the spectrogram, where a periodic pattern associated with the Hi-Lo siren was
revealed, it was assumed that a two-dimensional convolutional network could effectively identify
Hi-Lo sirens.

The convolutional stage of the network is organized as a sequence of three convolutional blocks
designed to process an input spectrogram resized to dimensions of (49 × 49). The first block consists
of a two-dimensional convolutional layer employing ReLU activation, no padding, and a stride=1.
Subsequently, a 2×2 MaxPooling layer is applied. To mitigate overfitting, a Dropout layer with
a 25% probability of masking activations is added. Following the convolutional stage, a Flatten
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layer is introduced, followed by two Dense layers serving as decision layers, with an intermediate
Dropout layer (𝑝=0.25). The architecture of our model is summarized in TABLE 2.

Table 2: EVD convolutional neural network architecture with 20,385 parameters.
# Layer Type Description Parameters Output Size
1 Conv1 Convolution2D 64 filters of 3x3 (ReLU) 640 49x49x1
2 Pool1 MaxPooling 2x2, stride 2 0 23x23x64
3 Drop1 Dropout p=0.25 0 23x23x64
4 Conv2 Convolution2D 24 filters of 3x3 (ReLU) 13,848 21x21x24
5 Pool2 Max Pooling 2x2, stride 2 0 10x10x24
6 Drop2 Dropout p=0.25 0 10x10x24
7 Conv3 Convolution2D 8 filters of 3x3 (ReLU) 1,736 8x8x8
8 Pool3 Max Pooling 2x2, stride 2 0 4x4x8
9 Drop3 Dropout p=0.25 0 4x4x8
10 Flat1 Flatten — 0 128
11 FC1 Dense 32 neurons (ReLU) 4,128 32
12 Drop4 Dropout p=0.25 0 32
13 FC2 Dense 1 neuron (Sigmoid) 33 1

As previously mentioned, all the audio clips were converted to log-Mel spectrograms with dimen-
sions (49, 49) to train and validate the proposed model. The CNN model training compromises
329 Hi-Lo sirens and 560 urban noise samples, as outlined in TABLE 1, using a batch size of 16
samples, the ADAM optimizer algorithm and binary cross–entropy (BCE) as the loss function. The
model achieved satisfactory accuracy and a loss after 20 epochs.

4. RESULTS

During the benchmark analysis, both models were tested using identical test datasets, with a) the
predicted positive class comprising 52Hi-Lo siren audio recordings and b) the false class comprising
280 urban sound recordings. For classification benchmarking purposes, the prediction categories
were as follows: nonsiren sounds were designed as true negatives (TNs), and false positives (FPs)
were those inaccurately classified as siren sounds. Similarly, each instance where a Hi-Lo siren au-
dio recording was correctly identified as a siren, it was classified as a true positive (TP). Conversely,
instanceswhere such recordingswere erroneously classified as non-siren soundswere categorized as
false negatives (FN). Once the respective confusion matrices were obtained (TABLE 4), the follow-
ing predictive performance metrics were selected: overall accuracy, sensitivity (recall), specificity,
precision, and F1 score.

The confusion matrices for the neural and symbolic models are shown in TABLE 3. The predictive
performance metrics are summarized in TABLE 4, which shows that the neural network model
achieved an accuracy of 98%, whereas the symbolic approach model achieved an accuracy of
97%. However, the machine learning model had one false negative (FN), meaning that it correctly
detected 51 siren sounds (TPs). On the other hand, the symbolic model failed to detect two of the 52
siren sounds (FNs) and correctly identified the remaining 50 sounds. As a result, the CNN model
exhibited a sensitivity of 98%, whereas the symbolic approach model had a sensitivity of 96%.
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Table 3: Neural/symbolic confusion matrices.

Dataset Siren No-Siren
classes Neural/Symbolic Neural/Symbolic
(actual) (predicted) (predicted)

52 Sirens 51 / 50 1 / 2
(positive class) (TP) (FN)
280 No-Siren 3 / 8 277 / 272
(negative class) (FP) (TN)

Table 4: Predictive performance metrics.

Metric Neural Symbolic
Accuracy 0.9879 0.9698
Sensitivity 0.9807 0.9615
Specificity 0.9892 0.9714
Precision 0.9444 0.8620
F1 Score 0.9622 0.9090

In terms of specificity, which refers to the proportion of nonsiren audios correctly classified out of
all the negative predictions it made, the CNN model performed 0.9892 better than the 0.9714 for
the symbolic model. The CNN model incorrectly detected 3 nonsiren sounds as sirens, while the
symbolic model generated 8 false positives. Similarly, the precision, which refers to the proportion
of the Hi-Lo siren audio correctly classified as siren audio out of all its positive predictions, was
greater in the CNN model (0.9444) than in the symbolic model (0.862). Finally, the F1 score was
0.9622 for the neural model and 0.909 for the symbolic model. In summary, despite exhibiting
a slightly lower overall classification accuracy, the symbolic model can serve as a viable auto-
explainable algorithm that is well-suited for low-cost edge computing devices.

5. DISCUSSION

The proposed EVD algorithm uses a symbolic representation at a higher level, which differs from
techniques based on Fourier transforms, wavelets, eigenwaves, and polynomial models. This sym-
bolization technique provides an adaptive representation of signal features as text patterns, enabling
regular expressions for pattern detection, unlike other data science methods, such as clustering,
classification, indexing, summarizing, trees, and anomaly detection [17]. The proposed symbolic
algorithm is self-explanatory and highly efficient, unlike black-box neural network models [4–11],
which always execute the same vast number of operations for each inference, unlike the symbolic
algorithm, which is halted if a specific criterion fails. Additionally, the algorithm provides a more
extensive feature set than any previous related works [3, 12, 13, 15, 25–27], it is relatively easy
to adjust and extend, and its regular expressions are highly portable to many different platforms
[28]. Some challenging classification scenarios can also be discussed. If the siren signal weakens,
due to the Doppler effects of vehicles approaching and moving away, in the presence of elevated
background noise (first image in 2), then the algorithm’s signal reconstruction module demonstrated
significant efficacy and accuracy. However, the criterion 𝑅0 will preclude any detection analysis for
extremely loud noise, i.e. very low SNR. In the second case shown in FIGURE 2, the presence of
siren harmonics posed challenges in identifying the fundamental frequencies of the siren tones.
Therefore, an iterative harmonic search was conducted specifically for this case (step 8). The
quantity and quality of dataset samples for urban sounds and sirens significantly influenced the
CNN model training. Therefore, it is advisable for future endeavors to incorporate a larger volume
of higher-quality Hi-Lo siren sounds, considering a well-defined audio recording protocol. Multiple
iterationswere conducted throughout each symbolic algorithm improvement across a dozen versions
to fine-tune features, criteria, and parameters, e.g. the first four versions, including 𝑅1−𝑅3, have
unacceptable precision (𝑝𝑟𝑒𝑐); ver. 7 (𝑅1 −𝑅4) 𝑝𝑟𝑒𝑐0.5; ver. 9 (𝑅1 −𝑅5) 𝑝𝑟𝑒𝑐 = 0.64. Due to

2197



https://www.oajaiml.com/ | April 2024 A. Pacheco, et al.

its symbolic criteria, this model is more adaptable and comprehensible than the alternative neural
network model. This adaptability enables parametric adjustments to enhance EVD capabilities,
enabling customization for specific regions. Incorporating the detection of additional siren effects,
such as yelp, is a relatively straightforward task that involves collecting enough yelp audio records,
adding a new class, and retraining the CNNmodel. However, a completely new feature engineering
process will be required to characterize a yelp signal and develop a new detection algorithm based
on signal symbolization. Another significant avenue and challenge for EVD is to explore a neuro-
symbolic approach [29], and explainable AI methods, especially for the feature extraction stage
[16]. Additionally, there is a need to conduct performance measurements of each model under
constrained hardware devices to validate its feasibility and efficiency .

6. CONCLUSIONS

Two Hi-Lo siren detection methods using the log-Mel spectrogram representation of audio records
have been presented. The first method is based on a symbolic procedure that analyzes spectrograms,
extracting features represented as text patterns and processing them with regular expressions and
a set of acceptance criteria. This method is self–explanatory, easy to tune, and requires minimal
computing resources. Thus, a lower–cost hardware platform can execute this symbolic-based model
to identify Hi-Lo sirens in real–time. The second proposed model is a convolutional neural network
(CNN) that directly processes the spectrogram representation of the audio. This approach is directly
trained using the spectrogram by taking advantage of the spatial correlation of the representation.
The proposed CNN has fewer parameters and layers (20K parameters, 80 Kb, 99% accuracy) than
the state-of-the-art reported CNNs, such as MLNet and SirenNet (7-27M parameters, 400-700 Kb,
96-98% accuracy) [4]. The performance of the methods was demonstrated through experiments,
and it was confirmed that both approaches are suitable for EVD.
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