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Abstract
Breast Carcinoma is a common cancer among women, with invasive ductal carcinoma and
lobular carcinoma being the two most frequent types. Early detection is critical to prevent
cancer from becoming malignant. Diagnostic tests include mammogram, ultrasound, MRI,
or biopsy. Machine Learning algorithms can play a key role in analyzing complex clinical
datasets to predict disease outcomes. This study uses machine learning and deep learning
techniques to analyze publicly available clinical and medical image data. For clinical data,
Principal Component Analysis (PCA) and Particle Swarm Optimization (PSO) are applied
on the Wisconsin Breast Cancer dataset (WDBC) for feature selection and evaluate the per-
formance of each modality in distinguishing between benign and malignant tumors. The
results obtained show that the Random Forest (RF) classifier outperforms other classification
algorithms using both PSO and PCA feature selections, achieving predictive accuracies of
95.7% and 97.2% respectively. The first part of the paper contains a comprehensive analysis
of the two feature selection methods on clinical data to optimize predictive performance. The
second part of the paper is concerned with image data. Although Histopathological Whole
Slide Imaging (WSI) has been validated for a variety of pathological applications for over
two decades of manual detection of cancerous tumors, it remains challenging and prone to
human error. With the potential of deep learning models to aid pathologists in detecting
cancer subtypes, and the increasing predictive ability of current image analysis techniques
in identifying the underlying genomic data and cancer-causing mutations, the second half of
the paper focusses on feature extraction using a deep convolutional neural network (U-Net)
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trained on WSI’s from The Cancer Genome Atlas (TCGA) to accurately classify and extract
relevant features. The focus is on feature extraction, nuclei-based instance segmentation,
H&E-stained image extraction, and quantifying intensity information for a given WSI to
classify the disease type. A comprehensive analysis of feature selection methods is presented
for both clinical and medical image data.

Keywords: Breast cancer, Machine learning, Principal component analysis, Particle swarm
optimization, Feature selection, Logistic regression, Naïve bayes classification, k-NN, Sup-
port vector machines, Random forest, K-Means, Whole slide images, TCGA, Histopathol-
ogy, Deep learning, Digital image analysis, Convolutional neural network, H&E-stained
images, Nuclei segmentation.

1. INTRODUCTION

Breast Carcinoma is a major health concern worldwide and the second leading cause of death in
women in the United States. According to the CDC, approximately 264,000 cases are diagnosed in
women and 2,400 cases in men annually [1]. The World Health Organization (WHO) reports that
in 2020, 2.3 million cases were diagnosed among women, resulting in 685,000 deaths worldwide,
making it the most prevalent cancer [2]. Various risk factors have been identified for breast cancer,
including age (over 50), dietary habits, heredity, reproductive history, alcohol consumption, being
overweight, and hormone replacement therapy, among others.

In recent years, data mining has become an important tool for discovering hidden patterns and ex-
tracting useful information from large datasets. Feature selection is a first step in data preprocessing,
as it helps to identify the most relevant features for building efficient machine learning models.
Dimensionality reduction techniques such as PCA, have been widely used to reduce the number
of features while preserving information [3], leading to increased predictive accuracy and learning
efficiency. The first half of this paper compares the performance of five popular classification
algorithms - Support Vector Machines [4], Naïve Bayes [5], K-Nearest Neighbors [6], Logistic
Regression [7], and Random Forest [8] - on the WDBC dataset. PCA and PSO are employed
as a dimensionality reduction technique for feature selection. It is inferred that PSO has shown
promising results in extracting a proper subset of features [9–11]. Compared to other evolutionary
algorithms PSO is computationally less expensive and converges more quickly [12]. However, the
results obtained in this paper show that PCA results in better classification accuracy and performance
than PSO and in each of the two feature selections, the Random Forest classifier outperforms the
others in terms of accuracy in diagnosing on the WDBC dataset.

Histopathological image analysis on whole slide images (WSIs) has seen significant advancements
in recent years, thanks to the use of various deep learning models in the field of computational
pathology. These models aid pathologists in screening image samples at the highest resolution and
detecting cancer patterns, such as differentiating between normal and abnormal tissue segmentation
[13], predicting cancer stage [14], and survival rate [15], among other applications. Given the
abundance of growing WSIs, it is imperative to analyze them using deep learning techniques that
break down the images into patches and perform patch-based optimization to train a whole slide
gigapixel image. The second half of this paper outlines various techniques for feature extraction in
WSIs and for quantifying the intensity of cell information.
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From this point, the paper is organized as follows: Section 2 provides an overview of related work
found in the literature on both clinical data and histopathological image analysis. Section 3 describes
the feature selection techniques such as Principal Component Analysis (PCA), and Particle Swarm
Optimization (PSO) to evaluate and identify the top features obtained from both PCA and PSO
and compare the performance on five widely used supervised classification algorithms. Section 4
discusses feature extraction techniques in whole slide images (WSI’s) and how to quantify the inten-
sity information. Finally, Section 5, presents conclusions and outlines potential avenues for future
research.

2. BACKGROUND STUDY AND RELATEDWORK

Medical data is often very complex and large, making it difficult to analyze manually. Data mining
techniques, such as classification, can help to discover hidden patterns in the data that may be
difficult to identify otherwise. By using these techniques, medical researchers can analyze large
amounts of data quickly and accurately and identify important patterns and trends. Classification
is a supervised machine learning technique that is often used in medical data analysis to predict a
particular outcome, such as the presence of breast tumor as benign (non-cancerous) or malignant
(cancerous). There have been many successful applications of classification techniques in medical
data analysis, including breast cancer diagnosis. These techniques have been used to develop pre-
dictive models that can accurately classify breast cancer cases based on a range of different factors,
including patient age, family history, and biopsy results. This section reviews the background
studies carried out on both clinical data (WDBC) and histopathological whole slide images (WSIs)
from TCGA.

2.1 Related Work on Clinical Data

The performance of various classification algorithms including Support Vector Machine (SVM),
Decision Tree (C4.5), Naive Bayes (NB), and k-Nearest Neighbors (k-NN), using the Wisconsin
Diagnosis Breast Cancer (WDBC) dataset was studied extensively [16]. According to reported
experimental results, the SVM classifier achieved the highest accuracy of 97.13%. In [17], the au-
thors compared the performance of various classification algorithms, including Naïve Bayes, SVM,
Radial Basis Neural Networks (RBNN), Decision Tree, and CART, to identify the best classifier
for the WDBC dataset. According to their experimental results, the SVM classifier achieved a
high accuracy of 96.99% for both binary and multiclass classification. In [18], the authors applied
multilayer perceptron, k-Nearest Neighbor, genetic programming, and random forest algorithms to
classify the disease category of theWDBC dataset as either Benign orMalignant. According to their
experimental results, the random forest classifier outperformed the other classification algorithms
by achieving an accuracy of 96.24%. In [19], the authors proposed a decision tree classifier to
predict 5-year survivability of breast cancer based on imbalanced data. To evaluate their models, the
authors incorporated a Bagging technique that supports decision tree models to predict the disease
outcome. In [20], the authors illustrated and compared various machine learning algorithms on the
WDBC dataset, which contains features from digitized images based on tests carried out on breast
masses. According to the experimental results, the ML algorithms performed well, with each of
them achieving over 90% test accuracy on the classification task. In [21], the authors proposed a
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hybrid model consisting of Random Forest and logistic regression classification techniques on the
WDBC dataset. Themodel utilizes top-k features from the dataset as inputs to the logistic regression
classifier to analyze and predict breast cancer survivability. TABLE 1. displays the accuracies found
in the literature and compares these with our proposed approach.

Table 1: Accuracy Comparison with other studies

Study Title Technique Accuracy Accuracy with top
features (Our Ap-
proach)

S. Aruna
et al., 2011

Knowledge based
Analysis of
various statistical
tools in detecting
breast cancer.

Naïve Bayes,
Support Vector
Machine (SVM),
Radial Basis Neural
Networks (RBNN),
Decision Tree and
CART and finds the
best classifier for
the WDBC dataset.

96.99%
(SVM
classifier)

97.20%
(RF classifier with 12
features using PCA)
95.70%
(RF classifier with 12
features using PSO)

Hiba Asri
et al., 2016

Using Machine
Learning
Algorithms
for Breast Cancer
Risk Prediction
and Diagnosis

Naïve Bayes,
Support Vector
Machine (SVM),
Radial Basis Neural
Networks (RBNN),
Decision Tree and
CART and finds the
best classifier for
the WDBC dataset.

97.13%
(SVM
classifier)

97.20%
(RF classifier with 12
features using PCA)
95.70%
(RF classifier with 12
features using PSO)

Abien Fred
Agarap,
2018

On Breast Cancer
Detection: An
Application
of Machine
Learning
Algorithms
on the Wisconsin
Diagnostic
dataset

Different machine
learning algorithms
are used

Approx 90% 97.20%
(RF classifier with 12
features using PCA)
95.70%
(RF classifier with 12
features using PSO)

Arpit
Bhardwaj
et al., 2022

Tree-Based
and Machine
Learning
Algorithm
Analysis for
Breast Cancer
Classification

Multilayer
perceptron,
k-Nearest
Neighbor, genetic
programming, and
random forest on the
WDBC dataset to
classify the disease.

96.99%
(RF
classifier)

97.20%
(RF classifier with 12
features using PCA)
95.70%
(RF classifier with 12
features using PSO)
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2.2 Related Work on Histopathological Image Analysis

For a given WSI, some of the problems in computational pathology such as predicting the cancer
grade, identifying tumor regions, predicting the survival rate, response to certain treatments, identi-
fying biomarkers to name a few bring several interesting challenges asWSIs aremulti-resolution and
constitute of a gigapixel image data per slide as these glass slides are captured through whole slide
scanners that produces a higher throughput and higher resolution images. These WSIs are too large
for a convolutional neural network to handle and require approximately 1000 GB GPU. Moreover,
detailed annotations for various tumor regions and hence detailed level ofWSI labeling, are difficult
to obtain from a pathologist. The learning problem in this case can be regarded as a weak supervision
problem. In [22], the authors propose a deep multiple-instance learning frame- work (MIL) where
each whole slide is regarded as a bag full of patches obtained from one WSI. It can be inferred from
[22], that the framework introduced is a classification problem where each WSI bag (containing
extracted patches) is categorized as either benign or malignant with a property that if there exists
even a single patch containing malignant cells, then the complete image is considered as Malignant.
The authors evaluated the framework on three different datasets and show that BreakHis achieves
the highest accuracy in comparison to the other two datasets. However, the issue with the MIL
framework is that patch representations do not always capture enough information as the extracted
features may span multiple patches. However, in [23], the authors propose an alternative way of
modeling the WSIs using a graph convolutional neural networks based (GNN) model. As WSIs are
divided into patches and because of their large size and memory constraints, the risk of losing the
visual context limits the understanding of the cellular architecture.

2.3 Main Contributions of the Paper

1. Two feature selection methods, namely Principal Component Analysis (PCA) and Particle
Swarm Optimization (PSO) have been used on the WDBC clinical dataset with the goal to
identify the top features and compare the performance across five of the most widely used
supervised classification algorithms, including Logistic Regression, Naïve Bayes, K-Nearest
Neighbors, Support Vector Machines, and Random Forest. The study yields significant in-
sights into the effectiveness and efficiency of various classification algorithms for predicting
breast cancer type. It emphasizes the critical role of feature selection techniques in enhancing
classification accuracy. Apart from this, the paper also throws light on the interpretability of
clinical data using k-Means to see the percentage of benign and malignant cells in each of the
k clusters.

2. As part of the medical image analysis, we explore feature extraction in WSI. To that end,
StarDist is usedwith a deep convolutional neural network (U-Net) as a backbonemodel trained
on WSI’s. Concepts such as H&E staining, nuclei-based instance segmentation as part of
feature extraction are carried out to quantify the intensity information for a given WSI.
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3. EXPERIMENTAL EVALUATION OF FEATURE SELECTION USING
PCA AND PSO

Feature Selection is a challenging task as it involves searching through a large space for possibly
interacting features. With the increase of the dimensionality of feature space the amount of data
required for making good decisions or achieving good decision boundaries increases exponentially.
There are three main methods for feature selection, namely, the Wrapper method [24], the Filter
method [25], and the Hybrid method [26]. However, the first two methods can be computationally
expensive for high dimensional feature spaces. To address this challenge, a Hybrid model that
combines the Wrapper and Filter methods has been developed, which is effective in handling high-
dimensional data. Feature dependency plays a crucial role in feature selection, and various measures
are available for it in the literature. One of the most popular measures is Correlation-based feature
selection [27], based on the correlation coefficient of pairs of features.

Correlation-based feature selection is a technique that involves measuring the similarity between
two features based on the correlation coefficient between them. FIGURE 1. illustrates the architec-
ture of the proposed approach.

Figure 1: Architecture of the Proposed Approach
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3.1 Principal Component Analysis

PCA is a technique used to reduce the dimensionality of datasets while minimizing information loss
and increasing interpretability. Interpretability can be increased by generating new variables that are
uncorrelated and that can maximize the variance. The goal is to find new variables, called principal
components, that maximize variance and are uncorrelated with each other. These principal com-
ponents are obtained by solving eigenvalue/eigenvector problems [28], which reduces the original
dataset. Additionally, PCA addresses the issue of multicollinearity, as all principal components are
orthogonal to one another. By preserving as much variability (statistical information) as possible,
PCA makes it easier to analyze and understand complex datasets.

PCA consists of several steps as follows: (1) The data is standardized (centered) by finding the mean
of all feature values and calculating how far each data point is from the mean. These new values
become the centered data D; (2) Obtain a covariance matrix A by finding the variance of each
feature column and calculating the pairwise covariance between the features. Positive and negative
covariances represent an increase/decrease in the two features or features in opposite directions,
respectively [29]. This means that the positive covariance between the two features indicate that the
features tend to move together (either increase or decrease), whereas negative covariance indicate
that these features move in the opposite directions; (3) Find the eigen values of the covariancematrix
using | A – λ I | = 0. Since there are 30 features, this step yields 30 eigen values, represented as
λ1, λ2, . . ., λ30; (4) Calculate the corresponding eigen vectors by normalizing them to unit length
and sorting them from highest to lowest eigen values. The direction of the maximum variance,
or principal components, is determined by the eigenvectors of the covariance matrix, while the
magnitude is defined by the corresponding eigen values; (5) Select the most important eigen values
and eigen vectors by ranking the corresponding eigen vectors based on the decreasing order of the
eigen values; (6) Finally, a new matrix of the transformed data, called the projection matrix of the
important eigen vectors, is obtained by multiplying the centered data D from step 1 with the eigen
vectors. This transformed data is represented as the Principal Component scores, such as PC1, PC2,
…, PC30, seen in TABLE 2, and it represents the original centered data in the principal component
space.

Table 2: Summary of the PCA object
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TABLE 2, shows the 30 principal components (PC1-PC30) along with the total variation in the
WDBCdataset. It can be inferred that PC1 extracts 44.3% of the total variance and PC2 extracts 19%
of the total variance (see FIGURE 2). This means that PC1 (the first principal component) spans the
direction of the most variation in the data, while PC2 (the second principal component) spans the
direction of the next variation. Together, PC1 and PC2 explain 63% of the total variance. Therefore,
by identifying the position of a sample with respect to PC1 and PC2, a reasonable inference can
be made in conjunction with the other samples. FIGURE 2 (i) is a biplot [30], of the correlation
matrix (PCA) that shows the position of each sample in terms of PC1 and PC2 using the ’ggbiplot’
package provided in R, which provides a better visualization of how samples relate to each other.
Each principal component is one-dimensional and has a midpoint of 0. The direction that a given
variable moves in each PC on a single dimension vector can be either positive or negative. The
feature markers are represented by arrows and id by numbers. The tightly clustered feature markers
in the biplot are considered highly correlated features.

Figure 2: Biplot illustrating the position of each sample in terms of PC1 and PC2
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It can be inferred from TABLE 2, that the number of principal components is the same as the number
of features (variables), indicating that the number of features isn’t reduced. However, since PC1
and PC2 capture around 63% of the total variance, they can be interpreted as storing almost all
the information of the data. Hence, the remaining PCs (PC3-PC30) can be ignored as they do not
contain significant information.

FIGURE 2 (ii) presents a bar plot of the variable loadings obtained from the PCA, which en-
ables the determination of variables that positively and negatively impact the principal components,
PC1 and PC2. Notably, the smoothness_SE is the most influential variable in PC1, while the
concavepoints_mean is the least influential. Similarly, the radius_mean is the most influential
variable in PC2, while the fractaldimension_mean is the least influential. It is worth noting that
PCA possesses certain undesirable features in situations where variables have different units of
measurement. PCA relies on a variance criterion that is affected by varied measurement units, and
the principal components of some covariance matrices can change if there exist some measurement
units on one or more variables. To address this undesirable feature, it is crucial to standardize
the variables. FIGURE 2 (iii) displays the percentage of explained variance, indicating that by
incorporating 12 features, approximately 97% of the total variance of the data can be preserved,
thereby justifying the implementation of PCA for these 12 best features.

3.1.1 Experimental evaluation

For this study, we utilized the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which com-
prises 569 instances with 32 columns. These columns represent features extracted from a digitized
image of a fine needle aspirate (FNA) of a breast mass, detailing the characteristics of the cell
nuclei visible in the image [31]. We evaluated and compared the performance of five classification
algorithms: Logistic Regression, Naïve Bayes, K-Nearest Neighbors, Support VectorMachines, and
Random Forest, based on four performance metrics: Sensitivity, Specificity, Precision, and Recall.
The main aim is to determine which algorithm would yield the highest accuracy when applied to
our dataset.

Data set Information

• Attribute information: ID number, Diagnosis (M = malignant, B = benign).

• Ten real-valued features are computed for each cell nucleus:

• radius (mean of distances from center to points on the perimeter)

• texture (standard deviation of gray-scale values)

• perimeter

• area

• smoothness (local variation in radius lengths)

• compactness (perimeter∧2 / area - 1.0)

• concavity (severity of concave portions of the contour)
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• concave points (number of concave portions of the contour)

• symmetry

• fractal dimension (“coastline approximation” - 1)

To ensure data quality, the dataset was cleansed to eliminate redundant data and missing values.
Unnecessary columns were removed, and Pearson’s coefficient was used to determine the pair-wise
correlation among all 31 columns, excluding the ID number column. As expected, the diagonal
values on the heatmap in FIGURE 3 (i), were all 1, indicating the correlation of a variable with
itself.

Following data cleansing, the next step is data normalization, as different featuresmay have different
scales, which is not ideal for machine learning algorithms. It is crucial to bring each feature to an op-
timal range for accurate analysis. One commonly used approach is Min-Max normalization, which
transforms every feature’s value to a decimal between 0 and 1 [32], with the minimum value being
0 and the maximum being 1. However, it is important to note that this approach does not handle
outliers well, even though it guarantees that all features will be of the same scale. Additionally, the
categorical outcome of disease diagnosis, represented by “M” and “B”, was converted to numerical
values of 1 and 0, respectively, as illustrated in FIGURE 3 (ii).

Based on FIGURE 3 (iii), it can be seen that the means of the radius, perimeter, and area exhibit
linear patterns, indicating that these features are highly correlated and therefore multicollinear.
Multicollinearity occurs when there are high inter-correlations between independent variables in
a multiple regression model. This phenomenon may lead to misleading results when attempting
to analyze how each independent variable can predict the dependent variable in a statistical model
[33].

FIGURE 3 (iii), illustrates the effect of multicollinearity, as the radius mean column has a higher
correlation of 1.0 and 0.99 with the perimeter mean and area mean columns, respectively. When
performing correlation-based feature selection, it is necessary to keep only one feature from the
remaining three. Similarly, the area mean column has a higher correlation of 0.96 with each of the
radius worst, perimeter worst, and area worst columns.

After dropping the required number of columns, we visualized the correlation matrix containing
12 features, including radius mean, texture mean, smoothness mean, compactness mean, symmetry
mean, fractal dimension mean, radius SE, texture SE, smoothness SE, compactness SE, symmetry
SE, and fractal dimension SE. The correlation matrices are shown in FIGURE 3 (iv), and FIGURE 3
(v), respectively. The data visualization was performed using popular Python libraries such as mat-
plotlib, seaborn, NumPy, and pandas. To better understand the data, we utilized various histogram
plots, including heatmaps and violin plots. To overcome the issue of multicollinearity, one effective
technique is to use principal component regression (PCR) [34], a regression analysis method based
on principal component analysis (PCA).
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Figure 3: Correlation Matrix with 12 extracted features
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3.1.2 Experimental evaluation and results

PCA is obtained by preprocessing and scaling the model using the standard scaler from the sk-learn
library in Python, which extracts the top 12 features out of the 31 features available in the dataset. By
selecting 12 features, we retain 97% of the total variance of the data. To evaluate the effectiveness of
the five classification algorithms, namely Logistic Regression (LR), Naïve Bayes (NB), K-Nearest
Neighbors (KNN), Support Vector Machines (SVM), and Random Forest (RF), we apply n-fold
cross-validation with n=10, where we divide the dataset into n-folds and train on (n-1) folds. The
performance of each algorithm is evaluated based on parameters such as i. Correctly classified
instances, ii. Incorrectly classified instances, iii. Accuracy, as shown in TABLE 3. Furthermore,
Figure 4, presents a graph comparing the performance of each classifier using PCA feature selection
with the top 12 features. To evaluate the performance of each classification algorithm, we measure
four metrics: i. Precision (Positive Predicted Value), ii. Recall (Sensitivity, True Positive Rate),
iii. F1-score (Measures both precision and recall), and iv. Accuracy. The performance results are
shown in TABLE 3.

Table 3: Effectiveness of the classification algorithms using PCA feature selection with top 12
features.

Classifiers (Using PCA) LR NB KNN SVM RF
Evaluation Parameters (k = 4)
Correct instances 551 544 551 549 555
Incorrect instances 18 25 18 20 14
Accuracy (%) 96.8 95.7 96.8 96.4 97.2

Figure 4: Graph comparing accuracy of each classifier using PCA feature selection with top 12
features.

3.1.3 Performance metrics to assess quality of each classification algorithm

The confusion matrix of each classifier allows us to identify how efficiently the model performs
in identifying the WDBC disease. The four parameters of the confusion matrix include i. True
Positive (TP), ii. True Negative (TN), iii. False Positive (FP), and iv. False Negative (FN). Based
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on these four parameters, we evaluate the four-performance metrics, i.e., i. Precision, ii. Recall, iii.
F1-score, and iv. Accuracy.

1. Precision (Positive predictive value), the ratio of all positive instances which are correctly
classified, is defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)

2. Recall (Sensitivity, True Positive Rate) is the ratio of true positives defined as:

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)

3. F1-score is a combined measure that trades off both precision and recall. Both precision and
recall must be good to achieve a high F1-score and is defined as:

F1 − score =
2 × precision × recall

precision + recall

4. Accuracy, the ratio of correctly classified instances is defined by using the formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝐴𝑙𝑙 𝑑𝑎𝑡𝑎
, 𝑤ℎ𝑒𝑟𝑒 𝐴𝑙𝑙 𝑑𝑎𝑡𝑎 = 𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

It can be seen from TABLES 3 and 4, and FIGURE 4, and FIGURE 5, that the Random Forest (RF)
classifier achieves an accuracy of 97.2% and outperforms other classifiers in terms of effectiveness
and efficiency. This result is obtained using principal component analysis (PCA) feature selection
with the top 12 features. It is worth noting that the RF classifier has a low correlation compared to
other classifiers, making it an effective choice. Models with low correlation generally provide more
accurate predictions. Therefore, the RF classifier outperforms other classifiers in terms of precision,
accuracy, recall, and F1 score in classifying breast carcinoma on the WDBC dataset.

Table 4: Efficiency of the different performance metrics

Classifiers Precision Recall F1-score Support Diagnosis

LR 0.94 0.97 0.96 67 Benign
0.98 0.97 0.97 121 Malignant

NB 0.94 0.94 0.94 72 Benign
0.97 0.97 0.97 116 Malignant

KNN 0.97 0.94 0.96 72 Benign
0.97 0.98 0.97 116 Malignant

SVM 0.94 0.97 0.95 63 Benign
0.98 0.96 0.97 108 Malignant

RF 0.93 0.96 0.95 57 Benign
0.98 0.96 0.97 114 Malignant
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Figure 5: Graph comparing the performance metric of each classifier.

Figure 6: Graph comparing the training and validation loss and training and validation accuracy of
RF classifier.

3.2 Particle Swarm Optimization

PSO is an evolutionary algorithm that was proposed by Kennedy et al. in 1995. This optimization
technique is based on parallel stochastic search and uses an analogy with insect or bird swarms [35].
Traditional feature selection methods often encounter issues related to high computational costs and
the risk of becoming stuck in local optima. To overcome these issues, global search techniques, such
as evolutionary computation methods like PSO and genetic algorithms (GA), are used for feature
selection [36–38]. These algorithms are considered methods for design, optimization, and problem
solving that mimic the process of natural evolution to some degree. Compared to other methods,
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PSO is computationally less expensive and has the potential to converge more quickly [39], offering
promising solutions to feature selection problems.

PSO is an optimization technique that aims to improve candidate solutions iteratively based on a
given quality measure. The algorithm uses a population of randomly generated particles X on an n-
dimensional search space and an objective function F defined onX, whichmaps these n-dimensional
particles to a real number R. The objective of PSO is to locate a position in the search space where
the objective function can be maximized. The PSO algorithm [40], works by:

i Defining a swarm of randomly placed particles 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}.

ii Allowing the particles to move in the search space based on their own experience and that of
other particles.

iii Collaboratively converging to a near-optimal location.

Each particle in PSO is defined by its velocity and position, and each particle corresponds to a
solution that is randomly generated. The goal of PSO is to search for a near-optimal solution in the
search space by iteratively changing the particles’ velocity and position, finding, and updating its
personal best position (p-Best) and global best position (g-Best) if needed [41]. Essentially, each
particle moves towards a combination of its own remembered best position and the remembered
global best position at each time step. The particles in PSO fly through the problem space by
following the current optimum particles. The algorithm aims to find the best particle, i.e., the one
with the highest fitness value, and then update the swarm’s position to converge to a near-optimal
location. PSO is a highly efficient optimization algorithm that has been widely used in many
different applications, such as data mining, image processing, and financial forecasting, among
others. Appendix A describes the PSO algorithm.

3.2.1 Experimental evaluation and results

We conducted an evaluation of the effectiveness of five classification algorithms using PSO feature
selection on the WDBC dataset. PSO was used to capture the top 15 features out of the 32 available
in the dataset, which were then tested on each classifier to assess their effectiveness based on four
parameters: (i) correctly classified instances, (ii) incorrectly classified instances, and (iii) accuracy
of each classifier.

In addition to assessing effectiveness, we also evaluated the efficiency of different performance
metrics of each of the five classification algorithms. This evaluation was based on four metrics:
(i) precision (positive predicted value), (ii) recall (sensitivity, true positive rate), (iii) F1-score
(which measures both precision and recall), and (iv) support. TABLE 5, displays the results of
this evaluation for each of the performance metrics.

Based on the results presented in TABLE 5, and FIGURE 7, we can observe that the Random Forest
(RF) classifier achieves an impressive accuracy of 95.74% and outperforms the other classifiers in
terms of effectiveness and efficiency, as also illustrated in TABLE 6, and FIGURE 8, using the par-
ticle swarm optimization (PSO) feature selection with the top 15 features. It is noteworthy that the
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Table 5: Effectiveness of the Classification Algorithms using PSO Feature Selection with top 15
features

Classifiers (Using PCA) LR NB KNN SVM RF
Evaluation Parameters (k = 4)
Correct instances 534 529 524 524 545
Incorrect instances 35 40 45 45 24
Accuracy (%) 93.85 93.08 92.10 92.10 95.74

RF classifier shows low correlation when compared to other classifiers, making it a more effective
model for accurate predictions [42]. Therefore, the RF classifier outperforms other classifiers with
respect to precision, accuracy, recall, and F1 score in the classification of breast carcinoma.

Figure 7: Graph comparing each classifier using PSO Feature Selection with top 15 features.

Table 6: Efficiency of the different performance metrics

Classifiers Precision Recall F1-score Support Diagnosis

LR 0.95 0.90 0.93 42 Benign
0.95 0.97 0.96 72 Malignant

NB 0.93 0.86 0.89 72 Benign
0.92 0.96 0.94 116 Malignant

KNN 0.97 0.81 0.88 42 Benign
0.90 0.99 0.94 72 Malignant

SVM 1.00 0.76 0.86 42 Benign
0.88 1.00 0.94 72 Malignant

RF 0.98 0.89 0.93 72 Benign
0.93 0.99 0.96 116 Malignant

The training, validation, and testing were performed using a 70-10- 20 percent split for both feature
selections PCA and PSO, employing the random forest (RF) classifier. FIGURE 6, and FIGURE 9,
illustrate the loss and accuracy curves obtained for both training and validation. Both the training
and validation loss began with a higher value and continued to decrease as the training progressed.
Notably, the validation loss was lower than the training loss, evenwithout using a dropout, indicating
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Figure 8: Graph comparing the performance metric of each classifier.

that the model became more robust during testing than it was during training, resulting in higher
testing accuracies. As seen in the figures, both the training and validation accuracies increased with
an increase in the number of epochs, reached a plateau, and then saturated. Therefore, the Random
Forest model overcame the issues of both underfitting and overfitting, demonstrating its efficiency
and effectiveness in identifying the breast cancer type.

Figure 9: Graph comparing the training and validation loss and training and validation accuracy of
RF classifier.
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3.2.2 Interpretability of clinical data using k-means

The goal of the analysis is to cluster the patients sample IDs based on the available features and
cluster these into “benign” and “malignant” groups which can be seen as a binary classification
problem. Two clustering analysis approaches – Hierarchical and Non-Hierarchical clustering (ex.
K-means) were used. FIGURE 10 (i), uses a K-Means clustering created using Morpheus [43], a
data visualization and analysis tool to visualize the dataset as a heat map and then perform some
exploratory analysis - in our case, K-Means.

Figure 10: K-Means showing the percentage of cells in each of the K clusters (K=7)

The different feature patterns are demonstrated by the different malignant or benign samples as seen
in FIGURE 10 (i). The number of clusters is seven from k=1 to 7. One can even go higher with the
different values of k to obtain better metrics and distributions. For example, for k=1, 2, 3, 4, 5, 6;
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the diagnosis looks uniform and almost entirely benign and the samples that are benign with these
structures are very different than the other representations of k.

FIGURE 10 (ii), is a bar plot representing the percentage of Benign and Malignant states in each of
the k clusters ranging from 1 to 7. For k = 1, 3, 4, 7, we see a higher percentage of Benign cells i.e.,
86.5%, 87.3%, 82.6% and 98.1% respectively. On the other hand, for k = 2, 5, 6, we see a higher
percentage of Malignant cells i.e., 97.8%, 94%, and 86%. This bar plot has been extracted from a
JSON file after saving a session from FIGURE 10 (i). This way one can view this visualization as
a guide to obtain the informative categorization of the patient diagnosis outcomes obtaining more
reasonable clusters from a practical standpoint than the other available statistical techniques [44].
The optimal number of clusters obtained is seen in FIGURE 10 (iii), the total within sum of squares
shows the amount of variation on the dependent variable.

3.2.3 Discussion and Key observations

Sections 3.1 and 3.2 evaluate various classification algorithms, their effectiveness and efficiency
in diagnosing the breast cancer type, using PCA and PSO feature selection techniques. Feature
selection is a crucial factor in machine learning, as it significantly impacts the accuracy and perfor-
mance characteristics of different classification algorithms. It is seen that Random Forrest Classifier
outperforms the other classification algorithms and achieves an overall accuracy of 97.2% and
95.7% respectively with PCA and PSO feature selection techniques. We observe that the other four
classification algorithms also had accuracies over 90%. The main aim in evaluating the models is
to maximize the classification performance with a minimal set of important features. In comparison
using PCA feature selection on RF classifier gives a better classification accuracy of 97.2% with a
reduced set of 12 features while on the other hand, using PSO feature selection on RF classifier gives
a classification accuracy of 95.7% with a 15-feature set, out of the 32 features shown in TABLE 7.
Therefore, it can be concluded that the PCA feature selection is more efficient than PSO. These
results suggest that, as part of future analysis, one can test these proposed techniques with much
larger datasets and with a much larger number of features.

Table 7: Comparison of RF classifier accuracies with PCA and PSO

Classifiers Feature Selection No. of Reduced Features Approach Accuracies

RF PCA 12 RF + PCA 97.2%
PSO 15 RF + PSO 95.7%

The performance metrics of the Random Forest classifier on the WDBC data set are as follows: Be-
nign (Precision-93%, Recall-96%, F1-score-95%) and Malignant (Precision-98%, Recall-96%, F1-
score-97%) for PCA and (Precision-98%, Recall-89%, F1-score-93%) and (Precision-93%, Recall-
99%, F1-score-96%) for PSO. Section 3 also throws light on the interpretability of WDBC clinical
data and performs exploratory analysis using k-Means to see the percentage of benign andmalignant
cells in each of the k clusters.
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4. FEATURE EXTRACTION FROMWHOLE SLIDE IMAGES

In recent years, efforts in the digitization of WSI’s have gained immense prominence in the field of
medical image analysis and have opened doors for studying and developing various deep learning
models for analysis, prediction, and treatment of various types of carcinomas. Tissue samples on a
whole slide are diagnosed by using the staining elements namely H&E (hematoxylin and eosin). The
biological cell structures are visualized under a microscope with the light illuminating from below
the slide of stained tissues or using images of high resolution namely digitized WSI. When there is
no stain, a bright white light appears and the whole light is passed through the slide. The amount
of light absorbed by a stain indicates that the stain has adhered to a substance and had absorbed
some of the light. This is an old technique to predict cancer cells from H&E-stained tissues and
has many limitations. This includes cancer cells that may have multiple appearances and cells may
exhibit similar hyperchromatic features thereby making the prediction difficult. To address these
concerns, deep learning models help in better visualization of image patterns so that even the tiniest
dot isn’t missed in the identification. There have been various deep learning methods used so far
to predict tumor type. This prediction is either a binary classification or multi-class classification
[44], problem. One can use pretrained networks such as VGG-16, Inception-V3, Inception-V4,
U-NET, Mask RC-NN, to name a few. Deep learning algorithms make use of a sequence of tasks
that include preprocessing of images, segmentation, feature extraction through convolutional neural
networks (CNNs), and finally classification (either benign or malignant). These algorithms help in
assisting the pathologist to detect the cancer subtypes and gene mutations. Additionally, with the
rapid advancements in AI tools there is an increasing demand for predictive assays that help in the
additional treatment of patients during surgery [45].

4.1 The WSI Data Set

Histopathological Breast WSI’s have been derived from The Cancer Genome Atlas (TCGA) portal.
The project name is Breast Invasive Carcinoma to detect the disease type Ductal and Lobular
Neoplasms. The samples have been derived through SOB (surgical open biopsy). These WSI’s
have been taken from the vendor Aperio on an objective power of 40X (the slide image is captured
at 40X resolution), obtained using the Open Slide library. WSIs resembles a pyramid structure
with different levels of resolution. Considering an example of one such image, the slide dimen-
sions at the native resolution are 44743×50293 pixels but a typical whole slide image may contain
100,000×100,000 pixels. One can get the slide dimensions at each level by obtaining the number of
levels in the WSI and acquiring the dimensions of various levels followed by down sampling each
level by a certain amount. The WSI are converted to RGB channels and then, at the implementation
level, to a NumPy array for further processing. SinceWSIs are large images, it is important to divide
them into several tiles for deep learning training or other forms of processing.

FIGURE 11, displays the tiles extracted from a given WSI. A common method of visualizing the
sample is to stain them using H&E - the preferred ways to stain images by pathologist. Depending
on how round or dense the nuclei are, it enables the pathologists to interpret a given tissue. The H
component selectively stains the nucleic acids a blue-purple and the E component stains the proteins
with a bright pink color. Using the algorithm described in [46], as an example, we extract a small
patch/tile from a givenWSI and obtain the normalized image, the H image and the E image as shown
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in FIGURE 12. This algorithm converts a given RGB image to an optical density (OD) and removes
data with the intensity of OD < β (threshold, β = 0.15). Next step in the process is to calculate the
singular value decomposition (SVD) on the OD image and create a plane from directions obtained
from SVD that correspond to the two largest singular values. The data is then projected onto the
plane and normalizes to unit length. In context to the SVD direction, the algorithm then calculates
the angle of each point to obtain the robust extremes of the angle (α𝑡ℎ and (100- α)𝑡ℎ percentiles).
Finally, it converts these extremes back to the optical density (OD) space to obtain the optical stain
vectors.

Figure 11: Tiles extracted from a given WSI using the Deep Zoom Generator from Open Slide

FIGURE 12, illustrates the process of staining the slides using H&E but this technique is prone to
intra and inter observer variability and suffers from low throughput [47]. Because of this reason,
a growing interest in digital pathology has acquired much attention wherein the digitized WSI’s
are captured from glass slides using a scanning device. This procedure therefore allows efficient
processing and analysis of tissue specimens [48]. WSI includes tens of thousands of nuclei of
different types (cell types) that can be analyzed to predict the disease outcome. Based on the nuclear
features, one can predict the survival rate, tumor grade, disease type. It is important to note that
good quality tissue segmentation involves efficient and accurate prediction. Nuclei segmentation
is the initial step for further downstream analysis to assess and visualize the tissue components
that contribute to the disease [49]. It is worth remembering here that nuclei display a high level
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of heterogeneity in terms of its shape, size, and the chromatin patterns between different cell and
disease types.

Figure 12: Normalized image, the H image and the E image for a given tile/patch.

4.2 Nuclei Segmentation in WSIs

For many biological applications, it is important to detect and segment cells and nuclei. The main
idea of segmentation is to classify cells at a pixel level. There are two types of segmentation
techniques: semantic segmentation and instance segmentation. Recent approaches made use of per-
pixel cell segmentation that include grouping of pixels and the use of bounding box with refinement
of shapes. This techniquemay suffer from segmentation errors in situations where there are crowded
cells. On the other hand, instance segmentation is the process of assigning a cell instance identity
to each pixel in the image [50]. In the bottom-up approach, each pixel is first classified into certain
semantic classes i.e., either cell or background and then pixels are grouped to individual instances if
they fall under the same class. This approach makes use of learned classifiers, for example random
forests, or various types of neural networks.

Although this approach achieves good results, it has issues for images in situations where crowded
cell nuclei are present. To address these concerns, a top-down approach is suggested wherein the
individual cell instances are first localized with some shape and then the shape is refined using
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object detection methods that predict and classify the pixels within each box, i.e., axis aligned
bounding box (e.g., mask-RCNN). Such methods prevent detecting the same object multiple times
in situations where boxes with lower confidence are suppressed by boxes having higher confidence
using an NMS (non-maximum suppression) step. If the objects are poorly represented by their axis-
aligned bounding boxes, NMS is problematic. To address this, the approach in [51], makes use of
rotated bounding boxes but it becomes necessary to accurately refine the box shape to distinguish
the objects, for example, the cell nuclei. To address all the concerns, especially to get rid of
the crowded nuclei, that cause merging bordering cell instances, the authors proposed a StarDist
model. StarDist is a cell detection approach that is successful in predicting the shape representation
that is flexible and whose accuracy can compete with that of the instance segmentation methods.
The star-convex polygons used in [51], approximate the typically roundish shapes of cell nuclei in
microscopy images. The architecture used by the StarDist model [52], makes use of a light-weight
neural network based on U-Net [53], which is easy to train with state-of-art approaches. Appendix
B reviews the U-net architecture.

4.3 Cell Detection Using Stardist

StarDist is a pretrained model that makes use of a light-weight neural network based on U-Net that
is easier to train and exhibits a good performance compared to other state of art methods. StarDist
uses object detection similar to that presented in [54], that can predict shapes for each interested
object. No axis-aligned bounding box is used because of the limitations discussed in [55].

4.3.1 The working of a starDist model

The purpose of the model is to predict a star-convex polygon such that for each (𝑖, 𝑗) image pixel a
set of 𝑛 radial distances from the center to the object boundary are computed at equidistant angles.
The model separately predicts the object probability 𝑑𝑖, 𝑗 for each pixel (𝑖, 𝑗). This way all the
polygons are predicted with their respective object probabilities by performing a non-maximum
(NMS) suppression. Each polygon represents an individual instance of the object. In conclusion,
both the object probabilities that include the Euclidean distance to the nearest background pixel
that supports polygons associated to the nearest cell center, and the computation of the star-convex
polygon distances 𝑟𝑘𝑖, 𝑗 to the object boundary by following the radial directions 𝑘 until it encounters
a different object identity. The GPU implementation is carried out on GoogleColab to compute the
distances on demand.

FIGURE 13, illustrates a general process for 2D images, where the training data consists of pairs of
raw images input with fully annotated labels meaning that each pixel is labeled either with a unique
object id, or a 0 for the background. This model is then trained to densely predict the radial distances
to the object boundaries with object probabilities 𝑑 to output a set of candidate polygons for a given
input image.
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Figure 13: Process carried using 2D images [56]

4.3.2 Experimental results

First, the given histopathological image is rendered at different resolutions as seen in FIGURE 14.
Using a pretrained model, StarDist uses a normalizer to predict the instances from a WSI, that
contain hundreds and thousands of nuclei as shown in FIGURE 15.

Figure 14: WSI displayed on different resolutions.

The model is trained on segmented input images each of size 256 × 256. Instances are randomly
predicted, and the radial distances are computed by visualizing each segmented nuclei as a polygon.
One such scenario of the instances predicted for a given image tile is seen on the right of FIGURE 16.
The radial distances and the object boundaries are plotted as shown in the left side of FIGURE 16.

The image is quantified to extract information regarding the size distribution of each segmented
nuclei which involves extracting the relevant features. To extract these metrics, a regionprops_table
is used as part of the sciKit image library, which is then converted into a Pandas data frame. This
way we provide an original image, the labelled image, to extract the intensity information for each
of the objects as shown in TABLE 8.
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Figure 15: Displaying the nuclei using instance segmentation for a given WSI at different
resolutions

Figure 16: Displaying the nuclei using instance segmentation for a given WSI at different
resolutions
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Table 8: Size distribution of the Segmented Nuclei

label area equivalent mean_ mean_ mean_ solidity
diameter intensity-0 intensity-1 intensity-2

0 1 416 23.014510 113.033654 90.451923 130.322115 0.962963
1 2 302 19.609139 89.069536 72.986755 111.450331 0.943750
2 3 502 25.281738 129.153386 96.880478 134.442231 0.965385
- - - - - - - -
- - - - - - - -

227896 227897 484 24.824342 76.514463 61.280992 71.159091 0.954635
227897 227898 480 24.721549 106.600000 112.468750 105.008333 0.958084

5. CONCLUSIONS AND FUTURE DIRECTIONS

This study focused on feature selection techniques on both clinical data and whole slide images. As
part of the clinical data, we used two feature selection techniques such as PCA and PSO to select the
top features and evaluated these on 5 different classifiers. The results show that the random forest
(RF) classifier with top 12 PCA features achieved the highest accuracy of 97.2% as compared to
RF classifier with top 15 features that achieved an accuracy of 95.7%. The second half of the paper
discussed the feature selection techniques for WSI’s from The Cancer Genome Atlas (TCGA). We
discussed StarDist that uses a deep convolutional neural network (U-Net) as a backbone model that
is trained on WSI’s to extract relevant features. This paper discussed feature extraction, nuclei-
based instance segmentation, H&E-stained image extraction, and quantifying intensity information
for a given WSI. Current image analysis is becoming more useful for prediction of the underlying
genomic data from single cell genomics and of the cancer-causing mutations. Going forward, the
focus of this research is how to predict tumor sensitivity to certain treatments based on tumor
histology.
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Appendix A

Algorithm of PSO

Given:

An n-dimensional search space: 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}.

An objective function, 𝐹 : 𝑋 𝑅 to be maximized.

Initialization:

Generate n particles, where 𝑥𝑖(0) 𝑋 is position of particle i

For each particle, j:

Set particle fitness q𝑖 (0) = F (x𝑖 (0))

/* All particles are assigned fitness values and are evaluated by fitness functions to be
optimized.

b𝑖 = f𝑖 (0)↔ particle best quality for i

p𝑖 = 𝑥𝑖 (0)↔ particle best position for i

Set particle velocity v𝑖 (0) = 0

/* Particles have velocities that direct the flying of particles.

Set b = max (b𝑖) ↔ global best quality

Set i* = argmax (b𝑖)↔ global best particle

Set p = x𝑖* (0)↔ global best position

For time t = 1 to t𝑚𝑎𝑥:

For each particle, i:

Update particle velocity:

𝑣𝑘 𝑗 (𝑡) = 𝜔𝑣𝑘 𝑗 (𝑡 − 1) + 𝐶 𝑟𝑐(𝑡) [𝑝𝑘 𝑗 − 𝑥𝑘 𝑗 (𝑡)] + 𝑆 𝑟𝑠(𝑡) [𝑝𝑘 − 𝑥𝑘 𝑗 (𝑡)]
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Update particle position:

𝑥𝑘 𝑗 (𝑡 + 1) = 𝑥𝑘 𝑗 (𝑡) + 𝑣𝑘 𝑗 (𝑡).

Evaluate quality 𝑓 𝑖(𝑡) = 𝐹 (𝑥𝑖(𝑡)).

if 𝑓 𝑖(𝑡) > 𝑏𝑖 𝑏𝑖 = 𝑓 (𝑡).

/* Update particle’s best position if needed

𝑝𝑖 = 𝑥𝑖(𝑡).

if max(𝑏𝑖) > 𝑏𝑏 = max(𝑏𝑖).

/* Update global best position if needed 𝑖∗ = argmax(𝑏𝑖). and 𝑝 = 𝑥𝑖 ∗ (𝑡)

The PSO algorithm employs particles, each with its own parameter values that vary based on
recent experience. This approach is simple, efficient, effective, and easy to implement, making
it applicable to a broad range of problems. Its flexibility enables it to solve difficult problems with
ease.

Appendix B

U-Net

A typical architecture of a convolutional neural network (CNN) comprises of a sequence of layers
wherein the input layer is the image that is to be processed. The convolutional layer has several
sub-layers each representing a filter mask that is convolved with the entire image in parallel. Each
filter mask is typically smaller than the input image. Pixels are convolved using a filter or a kernel
to create feature maps. The result of this step is a dot product between a patch and the kernel. In
the next step, subsampling is performed by using either Max, Min, or Average pooling types. The
result of this step is to reduce the data dimensionality and to reduce overfitting. Using a sequence
of convolution and pooling layers, the output is then fed to a fully connected layer for classification.

Convolutional networks typically make use of classification tasks where the image output is a single
class label. However, in the context of biomedical image processing, where thousands of training
images are beyond reach, it becomes important that the desired output should contain localization
particularly when an image consists of many visual tasks, and in such cases, it is required that a
class label is assigned to each pixel.

U-Net architecture proposed in [53], comprises of a contracting and symmetric expanding paths
wherein contracting path is used to capture the context and the latter is used to provide a precise
localization. The architecture of U-Net is illustrated in FIGURE 17. The contracting path makes
use of the typical architecture of a convolutional network. It comprises of the repeated application
of two 3x3 convolutions that are unpadded, with each followed by a rectified linear unit (ReLU) and
a 2x2 max pooling operation with stride 2 for down sampling. The number of feature channels are
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doubled at each down sampling step. While in the expansive path, each step follows the up sampling
of the feature map followed by a 2x2 up convolution, that halves the number of feature channels,
and a concatenation with the corresponding cropped feature map of the contracting path, and two
3x3 convolutions, with each followed by a ReLU. This cropping feature is necessary because of the
loss of border pixels in every convolution. Finally, at the last layer a 1x1 convolution is used that
maps each 64- component feature vector to the desired number of classes. On the contrary, the total
network has 23 convolutional layers.

Figure 17: Architecture of U-Net (32x32 pixels in the lowest resolution) [53].

As seen from the figure above, each box in blue corresponds to a multi-channel feature map. The
number of channels is presented at the top of each box. The size of x-y is provided at the lower
left edge of the box. White boxes represent copied feature maps. The arrows representing different
colors exhibit different operations.
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