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Abstract

Tongue cancer is a common oral cavity malignancy that originates in the mouth and throat.
Much effort has been invested in improving its diagnosis, treatment, and management. Sur-
gical removal, chemotherapy, and radiation therapy remain the major treatment for tongue
cancer. The treatment effect is determined by patients’ survival status. Previous studies
have identified certain survival and risk factors based on descriptive statistics, ignoring the
complex, nonlinear relationship among clinical and demographic variables. In this study,
we utilize five cutting-edge machine learning models and clinical data to predict the survival
of tongue cancer patients after treatment. Five-fold cross-validation, bootstrap analysis, and
permutation feature importance are applied to estimate and interpret model performance. The
prognostic factors identified by our method are consistent with previous clinical studies. Our
method is accurate, interpretable, and thus useable as additional evidence in tongue cancer
treatment and management.

Keywords: Tongue cancer, Machine learning, Survival prediction, Prognostic Factors,
Cancer treatment

1. INTRODUCTION

Tongue cancer is one of the most frequent head and neck malignancies. According to the American
Cancer Society, tongue cancer is diagnosed in approximately 20,000 patients and causes more than
2,700 deaths annually in the United States [1]. The average age of diagnosis is around 63, and 20%
of cases occur in patients younger than 55 [2]. The overall rate of new cases has risen in the last 20
years due to smoking, drinking alcohol, and human papillomavirus infection, the three major risk
factors [3]. The clinical community groups tongue cancer into two types based on its location: oral
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cancer, beginning in the front two-thirds of the tongue, and oropharyngeal cancer, beginning at the
back third of the tongue [3]. Tongue cancer typically originates in the squamous cells that line the
tongue’s surface, and the types of cells affected may determine prognosis and treatment [4]. Tongue
cancer treatment primarily involves surgical removal, chemotherapy, and radiation therapy [5]. The
S-year relative survival rate after treatment was 68.8% between 2012 and 2018 [6].

Accurate survival prediction is crucial for the treatment design and management of tongue cancer
given its wide occurrence. Inrecent years, machine learning has been successfully applied in related
medical fields, including cancer therapy [7], drug development [8, 9], and precision medicine [10].
Machine learning is potentially effective in predicting survival from patient data and identifying
important factors in treatment. However, the literature has few machine learning models dedicated
for tongue cancer survival. Although some studies have identified certain survival and risk factors,
the conclusions are usually based on descriptive statistics and linear models, ignoring the complex,
nonlinear relationship among clinical and demographic variables [2, 11, 12].

In this paper, we utilize a comprehensive machine learning framework to predict tongue cancer
survival after treatment. The analysis is performed on a real clinical dataset containing information
on 1712 patients receiving curative tongue cancer surgery. We train five cutting-edge machine
learning models on this dataset and provide unbiased prediction performance by five-fold cross-
validation. We further quantify the uncertainty of model performance by bootstrap analysis. The
important prognostic factors in model prediction are identified by permutation feature importance.
We also utilize three sampling schemes to generate data with balanced patients’ survival status and
examine its effects on model performance. Overall, the proposed machine learning models show
high accuracy in predicting patient survival. The prediction is consistent in terms of point estimation
and uncertainty measurement. The identified prognostic factors echo previous findings in clinical
studies. Our method is accurate, interpretable, and thus useable as additional evidence in tongue
cancer treatment and management.

The paper is outlined as follows. Section two describes the dataset used in this study and intro-
duces data cleaning and preprocessing. Section three summarizes the machine learning models and
prediction measurements. Section four shows the main results from five perspectives. Section five
concludes the study and discusses potential future work.

2. DATASET AND PREPROCESSING

In this study, we analyze a dataset collected from 1712 tongue cancer curative surgery recipients at
Chang Gung Memorial Hospitals, Taiwan, from 2004 to 2013 [2]. Among all patients, 1280 survive
after surgery (74.77%), and 432 fail to do so (25.23%). We treat survival as positive and non-survival
as negative in our analysis. Survival information is recorded at follow-up time for each patient. The
follow-up time is the period from the cancer diagnosis until death or the last follow-up visit. The
median follow-up time of all patients is 2.88 years. The exact death causes of each patient are not
provided in the datasets due to privacy concerns. In the original data collection, patients with poor
performance status (ECOG score > 3 [13]), end-stage renal disease, Child-Pugh C liver cirrhosis,
and heart or lung malfunction are removed to reduce the impact of factors besides tongue cancer.
The original dataset contains 12 variables of patients’ medical records and demographic information.
The area of operation and occurrence of operation are the same for all subjects and therefore do not
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Table 1: Summary statistics of all variables used in this study.

Variable Value Percentage
Age (years)

Mean + SD 51.83 £ 11.29

Range 21-92

Gender

Male 1504 87.85%
Female 208 12.15%
Stage

1 611 35.69%
2 406 23.71%
3 233 13.61%
4 1 0.06%
4A 453 26.46%
4B 6 0.35%
4C 2 0.12%
T stage

1 657 38.38%
2 629 36.74%
3 156 9.11%
4 270 15.77%
N stage

0 1202 70.21%
1 180 10.51%
2 327 19.10%
3 3 0.18%
Grade

1 516 30.14%
2 1033 60.34%
3 163 9.52%
Radiation therapy

Yes 612 35.75%
No 1100 64.25%
Chemotherapy

Yes 469 27.39%
No 1243 72.61%
Survival

Yes 1280 74.77%
No 423 25.23%

contribute to classification. We exclude these variables from analysis along with follow-up time,
which is not known prior to patient survival. Eight variables are used to predict patient survival,
including tumor stage, T stage, N stage, tumor grade, radiation therapy, chemotherapy, gender, and
age. The summary statistics of all variables are shown in TABLE 1.
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Tumor stage is assigned according to the American Joint Committee on Cancer’s (AJCC) TNM
classification of malignant tumors [14]: in stage 0, tumors have not grown or spread; in stage 1,
tumors are small and have not spread; in stage 2, tumors have grown but not spread; in stage 3,
tumors are larger and have spread to surrounding tissue or lymph nodes of the immune system; in
stages 4A, 4B, and 4C, tumors are larger and have spread to at least one other body organ (secondary
or metastatic cancer). T stage is the size of a tumor, labeled by numbers one (small) to four (large).
N stage indicates whether cancer has metastasized to lymph nodes, labeled by numbers zero (no
metastasis to lymph nodes) to three (metastasis to multiple lymph nodes). Tumor grade is associated
with the rate of cancer metastasis to other organs, represented by grades one (cancer cells resemble
normal cells and are not proliferating) to three (cancer cells look abnormal and spread aggressively).
Radiation therapy is a binary variable, indicating the administration of ionizing radiation to control
or kill malignant tumor cells. Chemotherapy is also a binary variable, indicating a regimen of one
or multiple anti-cancer drugs.

3. METHODS

In machine learning terminology, the prediction of patient survival is a binary classification task. We
utilize k-nearest neighbors (kNN) [15], random forest [16], extreme gradient boosting (XGBoost)
[17], logistic regression with a Lo penalty (logistic LASSO regression) [15], and an ensemble of
these four models to tackle this task using the dataset described in the last section.

k-nearest neighbors (KNN). kNN classifies patient survival according to their distance from neigh-
bors. For one patient with a variable vector X, its binary survival Y (X) is predicted as

1 (survial) if % > Y (X;) =05

Y(X) = Xi €Nk (Xi)
0 (non — survial) otherwise

where N (X;) is the neighborhood of that patient defined by the k closest patients. The distance be-
tween patients is calculated by the Euclidean distance in terms of patients’ variables. We implement
kNN using the function knn in R package class.

Random forest. Random forest classifies patient survival according to the most frequent outcome
of a set of decision trees. A decision tree assigns each patient to one class based on split rules defined
on the variable space. Suppose that there are P variables X1, Xo, ..., Xp in the dataset, and we split
the variable space into two regions, R; and Rs, according to variable X; and threshold s:

Ri(x,t,5) = {x|X; < s}
Ro(x,t,5) = {x|X; > s}

where x denotes patients. Then for any region R, with N,, patients, let p,,, be the proportion of
class r in region R,,:

R 1
pmr:N_ Z I(yi:r)

m X;i€R;,
where x; and y; are the variable vector and survial of patient i, respectively. I(x) is the indicator
function. The survival of patient x in region R, is predicted as:

Y(x) = argmax, puy,
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where r € {1, 0}. In each split generating regions R; and R, we seek the variable X; and threshold
s by solving the following optimization problem:

mings |y LY G).y)+ Y L), )

X;ER1(t,s) X]ER2(t,s)

where L(x, y) is the misclassification error. The splitting process continues until it satisfies certain
stopping rules, usually the maximum number of splits (tree depth) or the minimum number of
observations per region (leaf size). To build a random forest from multiple decision trees, we
generate bootstrap samples and apply the previous splitting rule to build one decision tree for each
bootstrap sample. Instead of searching all P variables, we randomly selected VP variables in each
split to reduce the correlation among different decision trees. The prediction of random forest is the
majority vote of all decision trees. We implement random forest using the function randomForest
in R package randomForest.

Extreme gradient boosting (XGBoost). Similar to random forest, XGBoost assigns patient sur-
vival according to the outcomes of multiple decision trees. Different from random forest, decision
trees are grown sequentially with each tree gradually reducing the misclassification errors to avoid
overfitting. We implement XGBoost using the function xgboost in R package xgboost.

Logistic LASSO regression. Logistic LASSO regression is based on regular logistic regression, in
which one patient’s survival probability is modeled by:

PY=1)= _

1+eXB
where X is the patient’s variable vector and 8 is the vector of model parameters. The model
parameter vector S is estimated by maximum likelihood estimation. With the estimated model,
the patient survival is calculated by:

_Jo ifPr=1)<05
|1 ifPY=1)205

Logistic LASSO regression regularizes logistic regression by introducing the Lo norm of model
parameter S into the likelihood function, which aims to reduce overfitting and accomplish feature
selection. We implement logistic LASSO regression using the function glmnet in R package
glmnet.

Ensemble model. An ensemble model is a combination of the aforementioned four models, i.e.,
the survival probabilities output by four models are averaged before conversion to patient survival
status. Suppose that one patient’s survival probabilities output by kNN, random forest, XGBoost,
and logistic LASSO regression are Pryn (Y = 1), Prr(Y = 1), PxGBoost(Y = 1), Prasso(Y =
1), respectively. Then the patient’s survival probability of ensemble model is

Pinn(Y =1)+ Pre(Y = 1) + PxGBoos: (Y =1) + Prasso(Y = 1)

Pensemble(Y = 1) = 4

Same as other models, the patient survival is predicted by:

y_ 10 ifPY=1)<05
|1 ifP(Y=1)>05
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Table 2: Optimal hyperparameters for the four individual models. Each value is determined by
five-fold cross-validation with AUPRC as the optimization criterion.

Model Hyperparameter | Optimal Values Description
kNN k 85 Number of neighbors
Random forest ntree 100 Number of trees
mtry 1 Number of variables sampled
. Minimum observations
nodesize 3 . .
in a terminal node
XGBoost nrounds 7 Maximum number of iterations
max.depth 2 Tree depth

n 0.5 Learning rate

Logistic LASSO regression A 0.02 Shrinkage coefficient

We refer to the four non-ensemble models as individual models moving forward.

Prediction performance measurement. We evaluate the model performance by six measure-
ments: accuracy, precision, recall, true negative rate (TNR), balanced accuracy, and area under
the precision-recall curve (AUPRC). Accuracy is the ratio of true predictions to the total number of
patients; precision is the ratio of true positive predictions to all positive predictions; recall is the ratio
of true positive predictions to all positive patients; TNR is the ratio of true negative predictions to
all negative patients; balanced accuracy is the average between recall and TNR; AUPRC measures
the overall capacity of a binary predictive model and adjusts for class imbalance in the data.

Cross-validation and hyperparameter tuning. We calculate the six measurements of each model
by five-fold cross-validation. First, patients are split into five groups, or folds. Then, five different
combinations of four folds are used as training sets in each of five successive cross-validation
iterations, with the remaining fold in each iteration as a test set for performance assessment. Fi-
nally, we average performance measurements over five iterations. We also conduct a grid search
to finetune hyperparameters in the four individual models. In each iteration of five-fold cross-
validation, we train models with different hyperparameter combinations on the four folds of training
set and calculate the AUPRC on the one fold of validation set. After cross-validation, we average
the AUPRC across five validation sets to obtain the final performance for each hyperparameter
combination. All model prediction measurements in the following analysis are calculated using
the hyperparameter combinations with the highest AUPRC under five-fold cross-validation. The
hyperparameters we finetune for each model and their optimal values are summarized in TABLE 2.
It should be noted that the hyperparameter tuning could slightly cause the overestimation of model
predictive power due to data leakage from training set to validation set. On the other hand, models
with finetuned hyperparameters provide an upper bound of predictive power, showing how well
machine learning models can achieve in predicting tongue cancer survival after surgery.
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Table 3: Six measurements of model prediction performance. Each measurement is calculated
by five-fold cross-validation using optimal hyperparameters. The highest values among
the five models are underscored.

Model Accuracy AUPRC |Precision|Recall| TNR |Balanced accuracy
kNN 0.7523 | 0.8726 | 0.7658 [0.9652/0.1236 0.5444
Random forest 0.7593 | 0.8791 | 0.7675 [0.9752|0.1237 0.5495
XGBoost 0.7664 | 0.8802 | 0.7855 [0.9463|0.2335 0.5899
Logistic LASSO regression| 0.7553 | 0.8752 | 0.7820 [0.9347|0.2257 0.5802
Ensemble 0.7605 | 0.8855 | 0.7719 [0.9658|0.1538 0.5598

4. RESULTS

Overall prediction performance. TABLE 3 summarizes the accuracy, AUPRC, precision, recall,
TNR, and balanced accuracy of the five models proposed in the last section. All measurements are
calculated by five-fold cross-validation using the optimal hyperparameters in TABLE 2. Among
four individual models, XGBoost achieves the highest accuracy (0.7664), AUPRC (0.8802), preci-
sion (0.7855), TNR (0.2335), and balanced accuracy (0.5899), indicating a solid overall capacity of
differentiating between positive and negative patients. Random forest outperforms others in recall
(0.9752), showing its strength in identifying surviving patients. Combining the four individual
models as an ensemble model improves AUPRC over the best-performing dividual model. It also
provides close-to-top performance in terms of accuracy, precision, and recall. Overall, the machine
learning models show mixed performance in predicting patient survival. There is no single model
dominating others in all six measurements. The leading performance of XGBoost and random forest
demonstrate the strong nonlinear relationship between patient survival and other variables, which
are largely ignored in previous studies. The ensemble model balances different measurements by
utilizing the strengths of individual models.

FIGURE 1 shows the calibration curves of five models. The calibration curve visualizes the quality
of the model’s predicted probability by plotting the true frequency of positives against its predicted
probability [18]. Specifically, the data are split into ten groups based on the positive probability
output by each model. The x-axis represents the average predicted positive probability in each
group and the y-axis is the fraction of true positives in each group, both ordered from 0.1 to 1 with a
step size of 0.1. A well-calibrated model has a calibration curve close to the 45-degree diagonal line,
representing consistency between predicted probability and true frequency of positives. Among the
five models, the ensemble model and XGBoost exhibit the best calibration. Random forest produces
many false negatives in the probability interval from 0.2 to 0.3, resulting in an early peaking in its
calibration curve. All models’ calibration curves start from 0.2 or larger values at the x-axis due
to the lack of predicted positive probability below 0.2. In other words, models tend to predict
more positives than negatives, which is also reflected by high precision and recall but low TNR in
TABLE 3.

Flexibility between positive and negative predictions. The overall performance in TABLE 3,
shows that all models have high recalls (above 0.9) but low TNRs (below 0.3), indicating an imbal-
ance in predicting positive and negative patients. The reason is that all models, by default, use 0.5
as the probability cutoff for assigning binary outcome labels. A patient with a positive probability
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Figure 1: The calibration curves of five models. The data are split into ten groups based on
predicted probabilities. The x-axis represents the average predicted positive probability
in each group. The y-axis is the fraction of true positives in each group. The dashed line
is the 45-degree diagonal line.

greater than 0.5 is predicted as positive (survival); otherwise, negative (not survival). The 0.5 cutoff
forces the models to predict more positive patients than negative patients, resulting in low TNRs. To
examine the models’ flexibility between positive and negative predictions, we adjust the probability
cutoff from 0.5 to 0.9, with a step size of 0.1, and then calculate the corresponding precisions, recalls,
TNRs, and balanced accuracies, respectively (TABLE 4). Under larger cutoffs, models predict
fewer positive patients and more negative patients, resulting in lower recalls but higher TNRs. For
example, TABLE 4, shows that when the cutoff is changed from 0.5 to 0.9, the TNR of XGBoost
increases from 0.2335 to 0.9910, and its recall decreases from 0.9463 to 0.0399. Model users can
choose appropriate cutoffs based on their interest in positive or negative predictions. Another benefit
of larger cutoffs is that they improve the accuracy of predicted positives, i.e., higher precision,
through more cautious positive prediction. As the cutoff increases from 0.5 to 0.9, TABLE 4,
shows that the precision of XGBoost increases from 0.7855 to 0.9398. We also observe that the
0.8 cutoff achieves the highest balanced accuracy for kNN, XGBoost, logistic LASSO regression,
and ensemble model.

Prediction uncertainty measurement. The six measurements in TABLE 3, are point estimations
of model performance. We further estimate the uncertainty of model prediction by bootstrapping.
Specifically, we repeat five-fold cross-validation 1000 times, with training data resampled with
replacement in every iteration. Each resampling is used to train one of the previous five models
before assessing accuracy, AUPRC, precision, recall, TNR, and balanced accuracy on the test set in
cross-validation. All models use their optimal hyperparameters from TABLE 2. We determine the
model uncertainty from the resulting empirical distribution of five-fold measurements. FIGURE 2
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Table 4: Four measurements of model performance under different cutoffs. The probability
cutoff of positive patients is adjusted from 0.5 to 0.9. Then corresponding precisions,
recalls, TNRs, and balanced accuracies are calculated for each model.

Model Measurement Cutoff
0.5 0.6 0.7 0.8 0.9
kNN Precision 0.7658 | 0.7962 | 0.8355 | 0.8657 | 0.9013
Recall 0.9652 | 0.8918 | 0.7853 | 0.6254 | 0.3603
TNR 0.1236 | 0.3210 | 0.5406 | 0.7126 | 0.8836
Balanced accuracy | 0.5444 | 0.6064 | 0.6630 | 0.6690 | 0.6220
Random forest Precision 0.7675 | 0.7896 | 0.8094 | 0.8336 | 0.8562
Recall 0.9752 1 0.9394 | 0.8948 | 0.8400 | 0.7548
TNR 0.1237 1 0.2570 | 0.3725 | 0.5004 | 0.6208
Balanced accuracy | 0.5495 | 0.5982 | 0.6337 | 0.6702 | 0.6878
XGBoost Precision 0.7855 | 0.8277 | 0.8491 | 0.8779 | 0.9398
Recall 0.9463 | 0.8570 | 0.7557 | 0.6650 | 0.0399
TNR 0.2335 | 0.4677 | 0.6005 | 0.7229 | 0.9910
Balanced accuracy | 0.5899 | 0.6624 | 0.6781 | 0.6940 | 0.5155
Logistic LASSO regression Precision 0.7820 | 0.8212 | 0.8549 | 0.8720 | 0.0000
Recall 0.9347 | 0.8711 | 0.7596 | 0.6790 | 0.0000
TNR 0.2257 | 0.4359 | 0.6165 | 0.7023 | 1.0000
Balanced accuracy | 0.5802 | 0.6535 | 0.6881 | 0.6907 | 0.5000
Ensemble Precision 0.7719 | 0.8113 | 0.8339 | 0.8638 | 0.9062
Recall 0.9658 | 0.8954 | 0.8227 | 0.7158 | 0.3380
TNR 0.1538 | 0.3808 | 0.5122 | 0.6624 | 0.8963
Balanced accuracy | 0.5598 | 0.6381 | 0.6675 | 0.6891 | 0.6172

presents visual comparisons of measurement distributions for each model. TABLE 5 includes
empirical 95% confidence intervals and means of performance measurements from bootstrapping.
The five models show a slightly different asymptotical performance ranking compared with their
point estimation in TABLE 2. Logistic LASSO regression has the highest mean accuracy, precision,
TNR, and balanced accuracy. The ensemble model outperforms other models on mean AUPRC and
recall. The performance differences among the five models are moderate in accuracy and AUPRC,
the two overall measurements. However, the gaps are more significant in precision, recall, TNR,
and balanced accuracy, indicating diverse model behavior in distinguishing positive and negative
patients. We also observe less performance variation in logistic LASSO regression and ensemble
model, an expected result given the stable model structure of logistic LASSO regression and the
diverse model components of the ensemble model.

Feature importance analysis. We utilize the permutation feature importance [16] to measure
the contribution of each variable to survival prediction. Permutation feature importance is the
decrease of AUPRC when the model predicts a test set with one variable permuted. Because
permutation breaks the relationship between variables and patient survival, a subsequent decrease
in AUPRC indicates model dependency on that variable for prediction. For each variable, we
average its permutation feature importance across five models. We then divide those averages by
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Table 5: Summary statistics of model performance calculated by bootstrapping. The empirical
95% confidence intervals and means of six measurements are calculated for each model.
The highest values among the five models are underscored.

Balanced
accuracy
(0.7430, | (0.8533, | (0.7599, |(0.9338, | (0.0886, | (0.5307,
kNN 9% Cl 0.7623) | 0.8752) | 0.7814) | 0.9776) | 0.2224) | 0.5798)
Mean 0.7531 | 0.8649 | 0.7698 | 0.9570 | 0.1504 | 0.5537
(0.7465, | (0.8605, | (0.7593, |(0.9320, | (0.0815,| (0.5296,
0.7658) | 0.8737) | 0.7855) | 0.9818) | 0.2403) | 0.5883)
Mean 0.7558 | 0.8674 | 0.7713 | 0.9593 | 0.1549 | 0.5571
(0.7477, | (0.8544, | (0.7773, | (0.9024, | (0.1974,| (0.5703,

Model Measurement|Accuracy| AUPRC |Precision| Recall | TNR

Random forest CI

XGBoost cl 0.7693) | 0.8771) | 0.8011) | 0.9496) | 0.3312) | 0.6203)
Mcan | 0.7588 | 0.8665 | 0.7886 | 0.9270 | 0.2623 | 0.5946

Logistic LASSO o (07535, | (0.8568, | (0.7851, | (0.9045, | (0.2438, | (0.5876,
regression 0.7699) | 0.8620) | 0.8042) | 0.9360) | 0.3440) | 0.6270)
Mean | 0.7622 | 0.8595 | 0.7951 | 0.9197 | 0.2973 | (0.6083)

0.7500, | (0.8711, | (0.7639, [ (0.9569, | (0.1130, | (0.5408,

Ensemble cl (0.7652) (0.8834) (0.7752) (0.9757) (0.1732) (0.5681)
Mean | 0.7583 | 0.8776 | 0.7697 | 0.9668 | 0.1431 | 0.5549

the largest importance among all variables to obtain the normalized permutation feature importance.
FIGURE 2 represents variable ranking from most important to least important in terms of normalized
permutation feature importance. Tumor grade contributes the most to the prediction of patient
survival, followed by N stage, T stage, chemotherapy, and radiation therapy. These variables
are consistent with previous findings in clinical and modeling studies. For example, histological
grading and the TNM staging system (i.e., tumor grade, N stage, and T stage) are well-established
prognostic factors in oral cancer diagnosis and treatment [ 19, 20]. Numerous studies also suggest the
importance of adjuvant therapy (i.e., chemotherapy and radiation therapy), especially for patients in
advanced stages [19, 21]. On the other hand, age and gender are among the least important variables
in the model prediction, making less than 10% of the contribution of the top variable, tumor grade.
These two variables are also found to have less impact on patient survival in clinical studies [22, 23].

The variable importance obtained by permutation feature importance needs to be cautiously in-
terpreted due to its limitations. First, the permutation feature importance does not measure the
variable necessity. Highly correlated variables produce positive feature importance because they
are utilized jointly by machine learning models in prediction. However, the model performance
likely remains the same after removing one of those variables from the training set. The models
still obtain similar information from other highly correlated variables. Second, permutation feature
importance tends to underestimate the importance of variables with moderate correlation. When one
variable is permuted, the model still has access to that variable through its correlated counterparts.
This will result in a lower decrease in prediction performance and thus importance values for both
variables, even if they are actually important. Third, permutation feature importance is specific to
the data used to calculate it. A different dataset may produce different feature importance for the
same variable.
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Figure 2: The empirical distributions of model performance computed by bootstrapping.
Six performance measurements of the five models are obtained from 1000 bootstrap
iterations.

Sampling schemes for predicting imbalanced data. One characteristic of the dataset used in this
study is the imbalanced positive and negative classes. As shown in TABLE 1, the ratio between
survival patients (positive) and non-survival patients (negative) is three to one. Such imbalance
will bias the model prediction toward the majority positive class, which is reflected by the high
precision and recall but low TNR in TABLES 3-5, and FIGURE 2. We adopt three sampling
schemes, over-sampling, under-sampling, and hybrid sampling to mitigate the issue of imbalanced
prediction. Over-sampling randomly duplicates data points of the minority class (negative) and
adds them to the training set. Under-sampling randomly removes data points of the majority class
(positive) from the training set. Hybrid sampling combines these two schemes by duplicating data
points of the minority class and removing data points of the majority class simultaneously. All three
schemes achieve equally sized positive and negative classes in the training set without changing the
class distribution in the test set.

TABLE 6 compares the six prediction measurements of three sampling schemes and no sampling
using random forest. All measurements are calculated by five-fold cross-validation with sampling
schemes conducted in the training set of each iteration. We set the hyperparameters of random
forest to their default setting in the R package randomForest. The default hyperparameters provide a
fair comparison between sampling schemes and avoid overfitting, as suggested by previous studies
[24]. We find that, compared with no sampling, all sampling schemes significantly improve the
prediction of minority class (negative), reflected by higher TNRs. Although recalls are lower after
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Grade 4 100.00

M stage 1 74.42

T stage 1 30.33

Chemotherapy 1 15.93

Radiation therapy 1 11.24

Stage 4 8.10

Age 1 6.74

Gender - :|4.6C|

Figure 3: The normalized permutation feature importance. Variables are sorted from highest to
lowest in terms of normalized importance.

Percentage (%)

Table 6: Six measurements of model prediction performance under different sampling
schemes. Each measurement is calculated by five-fold cross-validation using random
forest with default hyperparameters. The highest values among the five models are

underscored.
Sampling scheme | Accuracy | AUPRC | Precision | Recall | TNR | Balanced accuracy
No sampling 0.7623 0.8719 0.7950 | 0.9198 | 0.2963 0.6081
Over-sampling 0.7115 0.8702 0.8489 | 0.7477 | 0.6020 0.6748
Under-sampling 0.6957 0.8648 0.8522 | 0.7178 | 0.6272 0.6725
Hybrid sampling 0.7030 0.8770 0.8470 | 0.7359 | 0.6019 0.6689

applying sampling schemes, the balanced accuracies are higher than no sampling, indicating the
overall benefits of balanced training data. The three sampling schemes also improve the precision
thanks to the more cautious prediction of the positive class. We observe no significant performance
difference among the three sampling schemes.

S. CONCLUSIONS

In this study, we utilize machine learning models to predict the survival of tongue cancer patients
after receiving curative surgery. Our models are built on a clinical dataset with 1712 patients. We
use six measurements to provide a comprehensive evaluation of model performance. Although
no individual model outperforms others in all measurements, the nonlinear models, i.e., XGBoost
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and random forest, exhibit better overall accuracy. The linear predictive model, logistic LASSO
regression, provides more stable prediction in bootstrap analysis. We also find that the ensemble
model improves accuracy and stability by incorporating the strength of individual models. By
adjusting the probability cutoff, our models offer flexibility in predicting positive and negative
patients. Our feature importance analysis identifies key variables in predicting patient survival,
consistent with previous findings in clinical and modeling studies. Overall, the machine learning
models show satisfactory prediction performance. The average accuracy and AUPRC of the five
models are 0.7588 and 0.8785, respectively. In practice, AUPRC greater than 0.8 indicates excellent
discrimination between binary outcomes, especially given the imbalanced dataset in our study [25].

Several topics are worth exploring in future studies. First, all 1712 patients in the current dataset are
from Taiwan. Collecting larger datasets from a more diverse population will increase the generality
of machine learning models for new patients. Second, additional variables about patients’ lifestyles
and physical features, including smoking habits, body mass index, and occupational history, could
contribute to creating superior models. Third, emerging genomic technology, e.g., single-cell RNA-
sequencing (scRNA-seq), can be applied to reveal the transcriptomes of tongue cancer patients and
identify molecular biomarkers [26—30]. Finally, our machine learning framework can evaluate the
quality of clinical data in the survival diagnosis of tongue cancer. A high-quality dataset contains
clinical information for models to accurately predict patient survival. The model prediction accuracy
can serve as a proxy for the data quality of different datasets.

Data and Code Availability

The data used in this study is available at Zenodo repository:
https://zenodo.org/record/7450476#.Y532FHaZMuJ
The source code that implemented the result in this study is available at GitHub repository:

https://github.com/angvasilop/tongue_cancer
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