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Abstract
Vibration signals have been increasingly utilized in various engineering fields for analysis
and monitoring purposes, including structural health monitoring, fault diagnosis and damage
detection, where vibration signals can provide valuable information about the condition and
integrity of structures. In recent years, there has been a growing trend towards the use
of vibration signals in the field of bioengineering. Activity-induced structural vibrations,
particularly footstep-induced signals, are useful for analyzing the movement of biological
systems such as the human body and animals, providing valuable information regarding an
individual’s gait, body mass, and posture, making them an attractive tool for health monitor-
ing, security, and human-computer interaction. However, the presence of various types of
noise can compromise the accuracy of footstep-induced signal analysis. In this paper, we
propose a novel ensemble model that leverages both the ensemble of multiple signals and
of recurrent and convolutional neural network predictions. The proposed model consists
of three stages: preprocessing, hybrid modeling, and ensemble. In the preprocessing stage,
features are extracted using the Fast Fourier Transform and wavelet transform to capture
the underlying physics-governed dynamics of the system and extract spatial and temporal
features. In the hybrid modeling stage, a bi-directional LSTM is used to denoise the noisy
signal concatenated with FFT results, and a CNN is used to obtain a condensed feature
representation of the signal. In the ensemble stage, three layers of a fully-connected neural
network are used to produce the final denoised signal. The proposed model addresses the
challenges associated with structural vibration signals, which outperforms the prevailing
algorithms for a wide range of noise levels, evaluated using PSNR, SNR, and WMAPE.
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1. Background and Introduction

The application of structural vibration signal is prevalent in various engineering domains, includ-
ing civil, mechanical, and bioengineering. Its utility in civil engineering lies in monitoring the
dynamic behavior of structures such as bridges and buildings subjected to loads like earthquakes
and winds [1]. Structural Health Monitoring (SHM) systems have been installed on such structures
to ensure their safety and reliability, as aging structures may become a safety hazard [2, 3]. The
SHM systems acquire structural responses to detect any abnormal conditions, allowing for timely
maintenance and improved decision-making. Therefore, the accurate extraction of the underlying
structural vibration signal from civil architectures is essential to provide a robust foundation for the
reliability of SHM systems. In mechanical engineering, the use of structural vibration signal is vital
in monitoring the health of machines, such as turbines, pumps, and engines [4–6]. The effective
monitoring of equipment condition and fault diagnosis is crucial to ensure safe operation. The
accurate assessment of equipment condition necessitates high-quality data acquisition that contains
significant structural vibration information and low noise levels [7, 8].

The use of vibration signals in bioengineering has seen a recent surge in popularity. Structural
vibrations caused by activity provide a powerful tool for analyzing the movement of biological
systems such as animals and humans [9–12]. The study of footstep-induced signals has emerged
as a crucial area of research, given that these signals contain unique information on an individual’s
gait, body mass, and posture, which could used as a biometric feature to identify individuals [13,
14]. Footstep-induced signals have broad-ranging applications in fields such as health monitoring,
security, and human-computer interaction [15, 16]. The analysis of these signals can provide useful
insights into an individual’s physical condition, such as early indicators of movement disorders
or gait patterns indicating injuries or illnesses [17]. Additionally, these signals can be used to
develop secure and non-intrusive biometric authentication systems, which are essential in modern
security applications. Finally, the study of footstep-induced signals can also revolutionize the field
of human-computer interaction, as it enables the development of new natural and intuitive interfaces
between humans and machines [18]. Overall, the benefits of studying footstep-induced signals
are enormous, as they have potential applications in a wide range of fields, including healthcare,
security, and technology [19]. Denoising of these vibration signals is crucial for accurate analysis
and interpretation of the underlying physical phenomena. Vibration signals are often corrupted by
noise from various sources, such as electrical interference, environmental factors, and measurement
errors. To address this issue, various signal processing techniques have been developed, such as
Fourier transform, wavelet transform, and empirical mode decomposition [20, 21]. However, these
methods have limitations in handling complex and non-stationary signals with high noise levels [22].
As such, there is a pressing need for denoising methods that are both robust and efficient in capturing
the underlying structural mechanics that govern dynamic signals.

In this paper, we propose a novel architecture of a hybrid CNN-RNN stacking ensemble model,
where the bi-directional LSTM architecture enables themodel to capture both forward and backward
temporal dependencies in the signal and the CNN architecture extracts the condensed representation
of multiple vibration signals for the mutual denoising governed by complex dynamics. To model the
underlying structural dynamics, we utilize a set of PDE/ODEs and evaluate our model by comparing
its performance to that of other prevailing models using the synthetic dataset.
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2. Dataset

Figure 1: (a) A sample of foot-step induced floor vibration signal, normalized magnitude of
vibration as a function of time [23, 24]. (b) An example of the signals generated based
on Eqn. 1, displacement overlaid with a high level of supplemental Gaussian noise, 𝑤(𝑡)
as a function of time, 𝑡 [s].

The ground truth of a structural vibration signal can be challenging to obtain in practice due to
various factors, such as the presence of noise, measurement errors, and limitations in the digital-
ization process [8]. It is often impossible to measure or observe the true vibration signal directly,
and hence, to generate a dataset of structural vibration time series, we opted to use a PDE/ODE
solver (scipy.integrate) instead of conducting expensive experiments or computational-intensive
simulations using Abacus. Our choice was motivated by the fact that simulations and experiments
can be prohibitively expensive and time-consuming, whereas the use of a solver allowed us to
quickly and efficiently generate a large dataset of 100,000 synthetic time series (R100,000×500).
These synthetic time series were generated by adding supplementary noise to the output of the
PDE/ODE solver. For example, an added Gaussian noise can be modeled as 𝜖 (𝑡) = N(0, 𝜎2

𝜖 ),
where the standard deviation 𝜎𝜖 also represents the level of noise in this paper.

Our study focuses on the dynamics of structural vibrations induced by footsteps. Footsteps generate
a transient load that causes the structure to vibrate. This vibration can bemodeled as the response of a
Kirchhoff-Love plate, which is a widely used model in structural dynamics [25, 26]. The Kirchhoff-
Love plate theory assumes that the plate is thin compared to its length and width, and that it is subject
to small deformations. Additionally, we assume the linearity of isotropic plates, meaning that the
material properties of the plate are uniform in all directions. Under these assumptions, the induced
vibrations can be modeled as the solutions of a system of PDEs. Nguyen et. al [27] provides a
detailed description of the system of PDEs that we use to model the induced vibrations, where
the system consists of two coupled partial differential equations that describe the displacement and
rotation of the plate [26]. The boundary conditions are given by the Dirichlet condition, which
specifies the displacement of the plate along its boundaries [28]. By solving this system of PDEs,
we are able to generate a realistic simulation of the vibrations induced by footsteps on a Kirchhoff-
Love plate.

The dynamics of structural vibrations induced by footsteps can be simplified as the impulse response
of a Kirchhoff-Love plate subject to Dirichlet boundary conditions [29]. Under the assumption
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of linearity for isotropic plates, we model the induced vibrations as the solutions of a system of
PDEs [27, 30]:

𝐷𝑖∇2∇2𝒘𝑖 (𝒙, 𝑡) − 𝑇𝑖∇2𝒘𝑖 (𝒙, 𝑡) = 𝛿(𝒙, 𝑡) − 𝜌𝑖ℎ𝑖 ¥𝒘𝑖 (𝒙, 𝑡) − 𝐾𝑖 ¤𝒘𝑖 (𝒙, 𝑡), (1)

where 𝒘𝑖 (𝒙, 𝑡) is the transverse deflection, 𝐷𝑖 ∼ N(𝜇𝐷 , 𝜎𝐷),𝑇𝑖 ∼ N(𝜇𝑇 , 𝜎𝑇 ), 𝜌𝑖ℎ𝑖 ∼ N(𝜇𝜌ℎ, 𝜎𝜌ℎ)
and 𝐾𝑖 ∼ U(𝑎𝑈 , 𝑏𝑈) are all parameters of the structure, governing the dynamical response subject
to impulse 𝛿(𝒙, 𝑡).

The transverse deflection 𝒘𝑖 (𝒙, 𝑡), a function of measured coordinates in 2-dimensional spatial
domain and in temporal domain, represents the underlying noise-free signal that the denoisingmodel
attempts to retrieve, where subscript 𝑖 corresponds to a simulating scenario with a set of isotropic
plate parameters subjected to an external stimulus, under the assumption that the underlying noise-
free signal is linearly proportional to the transverse deflection. Each synthetic time series of the noisy
signal, �̃� is obtained by

∑
𝑖

(
𝑤𝑖 (𝒙, 𝑡) +

∑
𝑗 𝜖𝑖, 𝑗 (𝒙, 𝑡)

)
, where 𝜖𝑖, 𝑗 (𝒙, 𝑡) represents the supplementary

noise, potentially originating from various noise sources, including electromagnetic interference,
acoustic interference, and sensor digitization and calibration. To validate our synthetic data, we
conducted additional comparisons between our synthetic data and measurements reported in prior
studies [23, 24]. The sample of measured foot-step induced floor vibration signal is obtained
by a data collection system, consisting of distributed vibration sensing nodes to capture the floor
vibration, representative of structural vibrations and are precise in nature [23, 24]. The signals can
be obtained from one or more locations; for each location, the sythetic PDEs can be reduced to
ODEs. FIGURE 1 (a) illustrates the floor vibration signal induced by three footsteps, indicating
a superposition of vibrations from mediums with varied natural frequencies and damping ratios.
FIGURE 1 (b) shows a sample synthetic result which aligns closely with the actual measurements
of foot-step induced floor vibrations.

3. Methods, Results and Discussion

We propose a stacking ensemble model that leverages both the ensemble of multiple signals and the
predictions of Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs).
Our proposed model consists of three stages: a preprocessing stage, a hybrid modeling stage, and
an ensemble stage, as depicted in Fig. 2. Using multiple sensors is a common technique to improve
the measurement accuracy of induced structural vibration signals. However, our proposed model
is also able to handle the case where only a single measurement is available, allowing for effective
denoising in this scenario as well. In the preprocessing stage, each signal is concatenated with its
Fast Fourier Transform (FFT) results, while each image undergoes a set of wavelet transforms to
extract spatial and temporal features. In the hybridmodeling stage, a bi-directional Long Short-Term
Memory (LSTM) network is used to denoise the noisy signal concatenated with FFT results, and a
CNN is used to extract a condensed feature representation of the signal. Finally, in the ensemble
stage, three layers of fully-connected neural networks are used to produce the final denoised signal.

In the preprocessing stage, we employed multiple feature engineering techniques to extract useful
features from the input data. Specifically, we used the Fast Fourier Transform (FFT) to extract
features in the frequency domain, which capture the underlying physics-governed dynamics of
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Figure 2: A schematic of the architecture for our proposed stacking ensemble of hybrid CNN-RNN
model. The input to the model can consist of multiple noisy signals, ranging from �̃�1 to
�̃�𝒎, while the output is a denoised signal, represented by 𝒚.

the system and can help to improve the accuracy of predictions [31, 32]. By incorporating these
features as additional inputs into the bi-directional LSTM neural network, we were able to further
improve the accuracy of our predictions. In addition to FFT-based features, we also applied wavelet
transforms to extract spatial and temporal features from each signal in the input data. We used
wavelets in the family of Daubechies and Bior to produce three channels of features in the wavelet
transform domain [33]. Wavelet-based features are particularly useful for denoising in cases where
nonstationary noise is present, enabling the decomposition of the noise from the signal [34]. By
combining FFT and wavelet-based features in our preprocessing stage, we were able to effectively
capture both the spatial and temporal characteristics of the input data, leading to improved denoising
performance in our model. Given that all the noisy signals originate from the same vibration source,
a joint denoising utilizes the complementary and mutual underlying signal to reject the corrupted
signal in presence of different levels of noise [35]. The output of this first stage can be represented
as follows:

𝒚 [1]LSTM =
𝑚⋃
𝑖=1

{�̃�𝑖 , FFFT (�̃�𝑖)},

𝒚 [1]CNN =
𝑚⋃
𝑖=1

{FWT (�̃�𝑖)},

where 𝒚 [1]LSTM and 𝒚 [1]CNN denote the outputs of the first layer serving as inputs for the following LSTM
model and CNNmodel, respectively, FFFT and FCNN denote the Fast Fourier transform andWavelet
transform, respectively, and 𝑖 denotes the index of signal ranging from 0 to 𝑚.

In the hybrid modeling stage, we employed a ’many-to-many’ bi-directional LSTM architecture
with a dropout rate of 0.2 to address the challenges associated with analyzing structural vibration
signals, which are typically complex, non-stationary, and contaminated with noise (as shown in
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FIGURE. 2). By using a bi-directional architecture, our model is able to capture both past and
future temporal dependencies, which can improve the accuracy of predictions. Additionally, the use
of dropout regularization helps to prevent overfitting and improve the generalization performance of
the model. Simultaneously, each signal undergoes a set of wavelet transforms to extract spatial and
temporal features, leading to improved performance in denoising structural vibration signals.. These
features are stacked and used as input for a CNN, which consists of a sequence of convolutional
layers with the same padding, followed by a ReLU activation layer and a max pooling layer. The
resulting highly condensed features are then used to condition the ensemble in the next stage of our
model [36]. The output of this second stage can be expressed as:

𝒚 [2]LSTM = FLSTM
(
𝒚 [1]LSTM;𝚯LSTM

)
,

𝒚 [2]CNN = FCNN
(
𝒚 [1]CNN;𝚯CNN

)
,

where FLSTM (·;𝚯𝐿𝑆𝑇𝑀 ) and FCNN (·;𝚯𝐶𝑁𝑁 ) denote the functions of the bi-directional LSTM and
CNN model, with trainable parameters 𝚯𝐿𝑆𝑇𝑀 and 𝚯𝐶𝑁𝑁 , respectively.

In the ensemble stage, our proposed model consists of three fully connected neural network layers,
each of which is followed by a rectified linear unit (ReLU) activation function, with a linear activa-
tion function applied to the final layer. The input to this stage is a concatenation of the embeddings
from the bi-directional LSTM and CNN models, which have been applied to all noisy signals in
the range of �̃�1 to �̃�𝒎. The number of neurons in the last layer of the neural network is equal to
the number of samples in each signal, with its output as the denoised signal, represented by 𝒚. The
concatenation of the output results from the bi-directional LSTM and CNN models for all noisy
signals can help to improve the overall accuracy of the ensemble predictions. In addition, we use
wavelet features to condition the ensemble process. This approach helps to ensure that the model is
able to effectively denoise each signal while still taking into account the unique characteristics of
each signal. The output of the last stage can be obtained by

𝒚 = 𝒚 [3] = FNN
(
𝒚 [2]LSTM, 𝒚

[2]
CNN;𝚯NN

)
,

where FNN (·;𝚯𝑁𝑁 ) denotes the function of the fully-connected neural network, with trainable
parameters 𝚯𝑁𝑁 .

We propose a novel cost function that aims at achieving a balance between model accuracy and
generalization. To improve the accuracy of our model, we incorporate the expected loss over the
training set using the 𝐿2-norm. Furthermore, given that all the noisy signals originate from the
same vibration source, we also include the difference between LSTM model predictions as a loss
term. To enhance the generalizability of our model, we introduce regularization for all the trainable
parameters of the LSTM, CNN, and NN models. The loss can be expressed as:

L (𝚯) =E𝑰 ∥𝒚 − 𝑰∥2 + 𝜆LSTME ∥𝚯LSTM∥ + 𝜆CNNE ∥𝚯CNN∥ + 𝜆NNE ∥𝚯NN∥

+
∑
𝑖≠ 𝑗

𝜆E
𝒚 [2] ⟨𝑖⟩LSTM − 𝒚 [2] ⟨ 𝑗 ⟩LSTM

 ,
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Figure 3: (a) Noisy signals and denoised signals versus noise-free signals for level of noise 𝜎𝜖 ∈
[0.05, 0.1] and 𝜎𝜖 ∈ [0.15, 0.2]. (Inset) Boxplots of error for noisy signals �̃�−𝒘 and for
denoised signals �̂� − 𝒘 (b) PSNR of denoised signals and weighted MAPE of denoised
signals versus noise level.

Figure 4: (a) PSNR of denoised signals using five methods versus PSNR of noisy signals, where
Ensemble denotes our model, and Savgol, PYWT, Wiener and Total-Variation denote
Savitzky-Golay filter [37], PyWavelets method [38], Wiener filter [39], and Total-
Variation denoising [40], respectively. The shaded areas indicate the standard deviation
overlaid with the scatter plot. (b) MAPE of denoised signals using five methods versus
MAPE of noisy signals. The shaded areas indicate the standard deviation overlaid with
the scatter plot.

where 𝒚 [2] ⟨𝑖⟩LSTM represents the output of the second stage using LSTM model for the signal 𝑖.

The utilization of a stacking ensemble of hybrid convolutional neural network (CNN) and recurrent
neural network (RNN) models for structural vibration signal denoising is motivated by several aca-
demic considerations. Structural vibration signals often exhibit intricate and time-varying patterns,
necessitating the capability to capture both spatial and temporal dependencies. CNNs excel at
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extracting spatial features like frequency content and local patterns, while RNNs are effective in
modeling sequential patterns and capturing temporal dependencies. Combining these architectures
in a hybrid model enables the exploitation of their complementary strengths for improved denoising
performance. Furthermore, the stacking ensemble technique facilitates the integration of multi-
ple models trained on different subsets of data or with distinct hyperparameters. This ensemble
approach enhances denoising performance by reducing overfitting, improving generalization, and
incorporating diverse signal characteristics. The collective predictions of the stacked hybrid CNN-
RNN models yield more accurate results, making the denoising process more effective. We aim to
maximize the extraction of frequency domain features by incorporating both FFT andWavelet trans-
form techniques in the LSTM and CNNmodels, respectively. In summary, the stacking ensemble of
hybrid CNN-RNN models presents a promising approach to address the challenges associated with
denoising structural vibration signals, leveraging the strengths of both architectures and benefiting
from the principles of ensemble learning.

To ensure a reliable evaluation of our denoising models, we employed a partitioning scheme that
split the dataset into three subsets: training, holdout validation, and testing, in a 60:20:20 ratio.
All neural network architectures were initialized with random weights and trained from scratch
using a mini-batch size of 256 and a maximum of 500 iterations. Hyperparameters, including
𝜆LSTM, 𝜆CNN, 𝜆NN and 𝜆, were selected based on their performance on the validation set. Our
proposed denoising method was evaluated and compared to other algorithms using metrics such
as Peak Signal-to-Noise Ratio (PSNR) and Weighted Mean Absolute Percentage Error (WMAPE).
WMAPE is computed using the noise-free signal value as weights, which helps to alleviate the
issue of error amplification for signals with small magnitudes. Fig. 3 (a) presents noisy signal and
denoised signal versus a noise-free signal, where the dispersion illustrates the error distributions.
The plot demonstrates the effectiveness of our method for reducing errors in the denoised signal,
particularly for two selected ranges of noise level. The inset of FIGURE 3 (a) shows that the error
for the noisy image increases significantly as the noise level increases. In contrast, the denoised
signal generated by our model exhibits consistently low and stable error distributions. However, we
observed mild heteroskedasticity, where smaller amplitudes (-0.2 to 0.2) were associated with larger
observed errors [41]. To evaluate the robustness of our proposed denoising method, we conducted
experiments by varying the noise level 𝜎𝜖 from 0 to 0.2 and analyzing the trends of PSNR and
WMAPE. FIGURE 3 (b) demonstrates that our model maintains consistent denoising performance
across a wide range of noise levels, with PSNR values above 34 dB and WMAPE below 12% even
for 𝜎𝜖 = 0.2. However, as the noise level increased, we observed an increase in error variance,
which can compromise the overall performance of the model.

To compare the performance of our proposed denoising method with existing signal denoising
models, including the Savitzky-Golay filter [37], PyWavelets method [38], Wiener filter [39], and
Total-Variation denoising [40], we used PSNR, SNR and MAPE as key indicators. As illustrated in
FIGURE 4, our proposed model (designated as ”Ensemble” in the figure) exhibits superior perfor-
mance compared to the other models across the entire range of examined noise levels, as evidenced
by its higher PSNR and lower WMAPE. However, for signals with very high levels of noise,
the variance of the error may compromise our model’s performance. Notably, the Total-Variance
method was found to be closest to our model for signals with low levels of noise. The PyWavelets
method demonstrates a consistent performance, manifested by the low variance of PSNR andMAPE
for each noise level; however, the effectiveness of denoising may fall outside acceptable tolerances,
which may be improved through further fine-tuning of the selection of wavelets and parameters [42].
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In TABLE 1, we compare the performance of different denoising algorithms on a set of testing
datasets of sythetic structural vibration dataset holistically, using two different levels of noise: 𝜎𝜖

= 0.1 and 𝜎𝜖 = 0.2. The performance of each algorithm is evaluated based on three metrics: PSNR,
SNR, and WMAPE. Among the algorithms compared in the table, our proposed method (labeled
as ”Ensemble” in the table) outperforms the others in terms of all the applied metrics, achieving
an average PSNR of 38.0 dB for the first noise level and 35.8 dB for the second noise level. Our
method also achieves competitive performance in terms of SNR andWMAPE, with an average SNR
of 25.8 dB and 7.6 WMAPE for the first noise level, and 23.6 dB and 9.7 WMAPE for the second
noise level, respectively. Compared to the other denoising algorithms in the table, Savgol achieves
the lowest PSNR and SNR, while PyWavelets and Wiener perform similarly in terms of PSNR and
SNR but have higher WMAPE values. Total-Variance method achieves competitive performance
in terms of PSNR and WMAPE, but has a lower SNR than our proposed method. Our proposed
denoising method exhibits exceptional performance compared to other algorithms on the tested
datasets, owing to its specialized training on signals governed by structural dynamics, as well as
the stacking ensemble architecture leveraging the frequency and time domain features; in contrast,
other algorithms are designed for generic signal denoising scenarios.

Table 1: Comparison of Models
Model 𝜎𝜖 = 0.1 𝜎𝜖 = 0.2

PSNR SNR WMAPE PSNR SNR WMAPE
[dB] [dB] [%] [dB] [dB] [%]

Ensemble 38.0 25.8 7.6 35.8 23.6 9.7
Total-Variance 31.2 19.0 15.8 24.2 11.8 29.4
Wiener 26.3 13.9 28.2 20.1 7.7 46.2
Savgol 27.6 15.4 24.1 22.2 10.1 40.4
PYWT 24.4 13.4 25.7 21.5 10.4 37.8

4. Conclusion

Our research proposes a hybrid CNN-RNN tracking ensemble model for the denoising of single and
multiple structural vibration signals, commonly encountered in civil, mechanical and bioengineer-
ing. The model is composed of three stages: a preprocessing stage, a CNN-RNN hybrid modeling
stage, and an ensemble stage. The preprocessing stage extracts features from the input signal, such
as frequency and time domain characteristics through FFT and wavelet transform. The CNN-RNN
hybrid modeling, consisting of a bi-directional LSTM and CNN leverages these features to learn the
underlying patterns and condensed feature representation. Finally, the ensemble stage aggregates
the outputs of multiple models and time series to further improve performance. We tested the
proposed model on several test datasets with varying levels of noise. The model outperformed
existing algorithms across all datasets, as demonstrated by its superior performance in terms of
PSNR, SNR, and WMAPE. Our model’s success can be attributed to its specialized training on
signals regulated by structural dynamics, which allowed it to learn more relevant features than
previous models. Additionally, the innovative modeling architecture of the CNN-RNN hybrid stage
contributed to the model’s improved performance. Future work may involve the application of
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the proposed model to other types of vibration signals in bioengineering, as well as exploring the
potential of the model in other fields such as structural health monitoring and fault diagnosis.
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