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Abstract
Correct risk estimation of policyholders is of great significance to auto insurance companies.
While the current tools used in this field have been proven in practice to be quite efficient
and beneficial, we argue that there is still a lot of room for development and improvement
in the auto insurance risk estimation process. To this end, we develop a framework based
on a combination of a neural network together with a dimensionality reduction technique
t-SNE (t-distributed stochastic neighbour embedding). This enables us to visually represent
the complex structure of the risk as a two-dimensional surface, while still preserving the
properties of the local region in the features space. The obtained results, which are based on
real insurance data, reveal a clear contrast between the high and the low risk policy holders,
and indeed improve upon the actual risk estimation performed by the insurer. Due to the
visual accessibility of the portfolio in this approach, we argue that this framework could be
advantageous to the auto insurer, both as a main risk prediction tool and as an additional
validation stage in other approaches.
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1. INTRODUCTION

One of the main challenges of auto insurance companies is the prediction of a policyholder’s risk
with the goal of optimizing its premium and reducing the insurance claims. Ideally, at the time of
forming a policy, the insurer would need to know the likelihood of receiving a claim and its severity.
These, of course, cannot be accurately predicted as there are numerous factors contributing to the
result, many of which are unknown to the insurer. Traditionally the main tools of the insurer are
based on the method of Generalized Linear Models (GLM’s) [1-3]. The typical approach is fairly
straightforward: it is assumed that the data follows one of several probabilistic models, usually a
distribution in the exponential family, each associated with a certain pricing mechanism. Despite
the popularity and simplicity of the GLM’s, in the last several years the field of auto insurance has
seen a movement towards more advanced machine learning methods. These methods significantly
increase the class of functions that can be approximated compared to the GLM’s as they are not
restricted to a specific probabilistic distribution. They are more efficient in handling large and
complex data sets, as well as fitting non-linearities to the data.

Several authors have used different approaches in order to address the issue of claim and risk
prediction. Guelmanmodelled and predicted the loss-cost via a tree-based gradient boosting method
[4]. Yeo et al. employed both regression and hierarchical clustering in order to obtain the claim
cost in each risk group [5]. Quan & Valdez predicted the claim using multivariate decision trees
[6]. Although much of the research focuses on the claim and risk, some researchers have looked
at different insurance metrics. Chapados et al. proposed a pricing strategy by using a mixture of
several neural networks to estimate the insurance premiums [7]. Smith et al. used various regression
and classification models to analyse customer retention patterns [8]. Staudt &Wagner used random
forests to predict the claim severity in cases of car collisions [9]. Although many of these studies
have achieved promising results, the issue of building an interpretable and visually accessible model
still remains. This objective is particularly important in a business environment, where models
must generally be approved by decision makers who are inexperienced in statistical analysis but
nevertheless need to understand how the risk is being estimated.

To address the challenge of visually interpretable results, we explore the combined framework of a
neural network (NN)with a dimensional reduction technique. Themethod of t-distributed stochastic
neighbour embedding (t-SNE), developed by van der Maaten & Hinton [10], can efficiently project
complex data sets onto a two-dimensional plane, while preserving as much as possible the local
structure present in the original high-dimensional space. The use of t-SNE in supervised learning is
a fairly novel concept, and it was studied and implemented only in recent years. Both regression and
classification settings have been studied, where the t-SNE was used in combination with algorithms
such as k-NN, CNN and random forests [11-18]. These hybrid models have been shown to give
promising results with performance comparable to methods which do not implement dimensional
reduction and thus lack the crucial aspect of interpretability.

Themethodwe propose here employs a three-stage process to obtain a two-dimensional risk surface.
First, we implement t-SNE to obtain a dimension-reduced features space, which is then trained as
a target via a neural network. Finally, an additional neural network is used to estimate the risk for
each policy where the features space is the t-SNE 2D plane. Considering the stochastic nature of the
t-SNE, one would assume that using it in a supervised learning setting is not optimal. However, due
to the structure of the risk surface and the class-imbalanced nature of insurance claims, the results
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we obtain are quite robust. Beyond the predictive capabilities of our approach, it also serves as a
powerful visualization and validation mechanism. Since our method generates a two-dimensional
risk surface, one can exploit it to achieve higher confidence in the validation of any general algorithm
for risk prediction by a simple visual examination.

The objective of this paper is to outline the method and show its application to the analysis of auto
insurance risk. The remainder of the paper is organized as follows: In section 2 we present the
data and describe the model used throughout. In section 3 we implement the method on a test case
and present the results, where a thorough analysis and application of the method are also given.
Section 4 presents a final discussion of the results and future directions.

2. MODEL DESCRIPTION

2.1 Risk Estimation Problem Definition

The task we address in this paper is the estimation of an auto insurance claim risk associated with
a new candidate. For our case study we use a real-life data from a large insurance company. The
dataset consists of 30000 insurance contracts, and 14 parameters (features) associated with each
contract. These are:

1. Policyholder’s home latitude and longitude (2 features)

2. Car price

3. Engine power

4. Policyholder’s age and License age (2 features)

5. Vehicle age

6. Vehicle type (7 features)

The first 7 features (Nos. 1-5) are continuous variables, whereas the last 7 (No. 6) are a one-hot-
encoded binary versions of the different vehicle types. In addition, we have a binary claim/no-
claim indicator associated with each contract, which was used as a target (forecasting) variable.
As is usual in the field of auto insurance, the claims distribution results in a class-imbalanced target
variable. All features were normalized to obtain a zero mean and a unit variance. Thus, the standard
task is essentially an R14 →[0,1] function estimation, where 0 and 1 correspond to absence and to
appearance of a claim, respectively. This mapping results in a multi-dimensional function, which
can be used to assess the risk of new policyholders. It can be carried out by a variety of well-
known classification or regression methods [19]. Unfortunately, it’s inner structure (in the R14

space) usually cannot be observed or understood by the most curious user.

As stated in the introduction, this paper aims to achieve a solution which can be easily observed,
and thus could be intuitively understood. This attribute of the solution we call Visibility and it
must be distinguished from Explainability, which represents a different aspect of machine learning
systems [20]. Thus, the process is divided into two major steps: dimensionality reduction, and risk
estimation in the low-dimensional space.
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2.2 Dimensionality Reduction

We address the visibility of the risk estimation system by dimensionality reduction of the input’s
14D space onto a 2D space, using the well-known t-SNE method [10]. The aim is to obtain a clear
and visible separation between the high-risk and the low-risk contracts. We divide the data into
training and testing data sets, with 20000 and 10000 contracts, respectively. All data manipulations,
which include dimensionality reduction and machine learning system training, were applied on the
training data set, and afterwards applied and tested on the testing set. FIGURE 1 presents the R14

→ R2 dimensionality reduction for several values of perplexity which is a parameter of the t-SNE
method. From this picture, two tendencies are visually observed: (1) as the perplexity increases in
value the 2D map becomes more compact, and (2) the separation between high and low risk regions
enhances. The second tendency is the one we are looking for. Although, at this stage, the conclusion
about the separability of high/low risks is a result of the visual inspection only, it will be confirmed
numerically during the next stages.

t-SNE is applied on the training set and provides a point-to-point mapping. This form of mapping
is not a general transformation which can be applied to a new arbitrary point in the R14 space. As
a result, the mapping cannot be used to transfer previously unseen test data. We overcome this
hurdle by using a standard NN. The NN’s structure is as follows: input layer with 14 neurons, a
single hidden layer with 100 neurons, and a 2-neuron output layer which corresponds to the two-
dimensional embedding of t-SNE. We used a tanh transfer function for the hidden layer and a linear
function for the output layer (See FIGURE. 2). To obtain a general mapping (in contrast to the
t-SNE point-to-point mapping presented earlier), a NN was trained on the training set of the t-SNE
mapping with perplexity 500. This results in a R14 → R2 transformation denoted by NNtsne.

3. RESULTS

3.1 Risk Estimation Function

The high-risk and the low-risk regions can be visually inspected quite easily from the images in
FIGURE 3 but to estimate the risk numerically, we need a function which associates a contract with
its risk value. To estimate this function, we choose a NN (denoted NNrisk) with a similar structure
as in FIGURE 2 but with 2 inputs, 5 hidden and 1 output neurons. Although our target consists
of zeros and ones (an absence, and an appearance of a claim, respectively), because NNrisk has a
continuous non-limited output, it can have any value inside, as well as outside the [0,1] interval.
This output is normalized to a [0,1] interval, which represents a risk estimated by the system (note:
in the current realization, the NN original output laid in the [0.0371, 0.2295] interval, which, as
mentioned previously, has been normalized to the [0,1]). The result is a continuous function that
reproduces well the regions in R2 that contain the data (green and blue points), however, it fails
in the intermediate regions that contain no data (FIGURE 4 (a)). To overcome this drawback, we
introduced a discretized version of the risk function, which results from a 100x100 discretization
of R2. We take into account only the pixels which contain the underlying points, while zeroing the
empty regions (FIGURE 4 (b)). This results in a surface with several “single-pixel peaks”, which are
removed by averaging with a 3x3 smoothing kernel (FIGURE 4 (c)). The final continuous surface is
referred to as a risk surface. Note that because the zero-valued intermediate regions do not represent
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Figure 1: Training set R14 → R2 dimensionality reduction for several perplexity values. (a), (b),
(c), (d), (e) – correspond to the perplexity values: 1, 10, 20, 50, 500. (f) – zoom-in
of (e). Green points represent contracts with no claims, blue points represent contracts
with claims. Regions with a high concentration of blue points correspond to regions with
higher risk.

a real zero-risk, but an absence of training data, we must pay a careful attention to the test points
which can appear in these regions.

3.2 Testing

To test our model, we apply the following process on the test data:

1. Normalization of the test data according to the normalization parameters which were used for
the training data.

2. Dimensional reduction R14 → R2, which is achieved by applying NNtsne

3. Risk calculation using the risk surface.
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Figure 2: t-SNE point-to-point mapping and a general neural network transformation which models
it (NNtsne).

Figure 3: t-SNE with perplexity = 500 (left) and NNtsne mapping of the training (right). Green
points denote contracts with no claims, blue points denote contracts with claims.

As mentioned earlier, the test set contains 10000 contracts. After mapping them onto a t-SNE plane,
51 contracts appear to fall out of the risk surface and as a result were removed from consideration,
leaving 9949 contracts for testing. The results of this process are shown in FIGURE 5, where we
can see two segments, the medium and high risk regions, significantly separated from the majority
(FIGURE 5 (b), (c)).
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Figure 4: Risk surfaces. (a) NNrisk R2 →[0,1] continuous surface, (b) discretization of NNrisk over
existing training points, (c) smoothened version of (b).

Figure 5: Test set result. (a) NNtsne R14 →R2 mapping into t-SNE plane, (b) t-SNE points on the
risk surface, (c) histogram of the testing risk values.

To validate our risk estimation result, we calculated:

1. Risk – claim correlation.

2. Statistics of contracts and claims beyond a continuous thresholding over the risk.

Pearson’s correlation of our risk with the real claims is 0.204. Out of the 9949 test contracts 738
have claims, which sets the ratio of claims in the full test dataset to 7.4%. If we divide the risk into
three groups, [0,0.3), [0.3,0.5), [0.5,1], associated with low, medium, and high risk (FIGURE 5(c)),
we will get 8592, 302, and 1055 contracts with 464, 38, and 236 claims respectively, which are
5.4%, 12.6%, and 22.4% of the total amount of contracts in these groups. Note that the separation
into three risk groups was done according to the estimated risk, which appears to fit these real-life
situation. This procedure gives the insurance company several advantages: (a) an improved risk
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Figure 6: Test set. Statistics of contracts beyond continuous thresholding of risk. Blue line denotes
the ratio of contracts beyond a specific threshold. Red line denotes the claim ratio in the
contracts beyond a specific threshold.

picture of the portfolio, (b) allows for a better pricing strategy, (c) the insurer can remove high-risk
contracts from the portfolio.

In FIGURE 6 we present the result of the continuous thresholding, where policies beyond a specific
threshold are grouped together and their amount, together with the ratio of claims are calculated.
The results show an almost proportional increase of the claim ratio associated with an increase of
the estimated risk. The fluctuations which start beyond the risk value of 0.85, are associated with
insufficient statistics because of a small number of contracts, as can be seen in the blue line.

3.3 Using other ML methods

The use of a neural network to obtain the final risk (R2 → [0,1]) is not obligatory and essentially any
model which is general enough will be sufficient. To this end we present several alternative models
which are trained on the reduced two-dimensional space to predict the claim risk. In addition to the
neural network used, we considered linear and logistic regression, random forest, and gradient boost.
The performance on the test set was measured via the AUC value and is presented in TABLE 1.

Each non-linear model was trained after a grid-search for the optimal choice of hyperparameters.
For models with a continues unbounded output value, we normalized the resulting risk to a [0,1]
range. As we can see from the table, the non-linear models outperform the linear ones. While
the neural network gives the best performance, the other non-linear models are still considerably
close to it. Although in general the values of the AUC presented here are quite low, these are very
representative of the results in the field of auto insurance [21,22].
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Table 1: Risk estimation in t-SNE 2D space (R2 →[0,1]). Model performance with description of
hyperparameters

Model AUC Tuning Parameters
Linear Regression 0.6298 None
Logistic Regression 0.6305 None
Neural Network 0.6703 Single hidden layer with a tanh activation and 10 neurons,

and a linear output layer
Random Forest Regressor 0.6592 10 trees with max. depth of 5
Gradient Boost Regressor 0.6676 15 trees with max. depth of 5

Table 2: Risk estimation in the original high-dimensional space (R14 → [0,1]). Model performance
with description of hyperparameters.

Model AUC Tuning Parameters
Linear Regression 0 .6701 None
Logistic Regression 0.6704 None
Neural Network 0.6777 Single hidden layer with tanh activation and 100 neurons,

and a linear output layer
Random Forest Regressor 0.6811 20 trees with max. depth of 5
Gradient Boost Regressor 0.6747 20 trees with max. depth of 3

To further establish the robustness of our approach we compare the results in TABLE 1 to the same
set of models without the stage of dimensional reduction, i.e., the models were trained directly on
the high dimensional space (R14 → [0,1]). As before, the model parameters were tuned for optimal
performance with the results shown in TABLE 2. From this Table we conclude that although the
non-linear models score higher than the linear models, the differences here are significantly smaller
than in TABLE 1. In addition, we can see that even though the R14 → [0,1] risk estimation is better
than the R2 → [0,1], the difference remains small - especially in the NN model case, which presents
a very robust behavior and almost no degradation in the performance.

3.4 Comparison to the Insurer’s risk

Since we know the premium and the vehicle value of each contract, we can calculate a premium /
vehicle value ratio which we are hypothesizing should be proportional to the risk as it was estimated
by the original insurer. After normalizing this value to a [0,1] range, we will refer to it as the
“Insurer Risk” and denote it by Rinsurer. The risk surface which is based on Rinsurer is presented
in FIGURE 7 ((a), (b)). (Note: The Rinsurer surface was produced exactly in the same manner as
our risk surface, including zeroing pixels with non-existing data points and the surface smoothing
with a 3x3 kernel). For a clear view of the surface, we present it from two distinct points of
view. The Rinsurer risk distribution is given by the histogram in FIGURE 7(c). Comparison of
these results with our risk (FIGURE 5) shows a different surface structure, and a very different
histogram. The Rinsurer has no clear separation into risk groups, and its histogram is monotonic
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Figure 7: Test set. Rinsurer surface and histogram. (a) and (b) – two points of view of the risk
surface, (c) histogram of the insurer’s risk distribution.

Figure 8: Continuous thresholding for our and Rinsurer risks.

and long tailed. Indeed, one can argue that maybe the Rinsurer is more accurate than our risk. To
examine this argument, we calculated for Rinsurer its Pearson’s correlation with the real claims and
its AUC value, which correspond to 0.110 and 0.601 respectively. These values are lower than ours
which, as already stated, are 0.204 and 0.670. In addition, we compare the result of the continuous
thresholding of Rinsurer and our model’s risk. FIGURE 8 presents this continuous thresholding
and emphasizes a specific point associated with 20% of the contracts. This group, which represents
20% of the riskiest contracts (according to the calculated risk), contains 16.4% of claims for our
risk calculation but only 12.1% of claims for the Insurer’s risk. This means that our tool is capable
in identifying risky contracts better than the original insurer. TABLE 3 presents these values for
several percentages of contracts and shows that this tendency (our risk estimation is better than the
Rinsurer) is consistent throughout.
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Table 3: Percentage of contracts and claims for our and Rinsurer risks.
% of contracts % of claims (our risk) % of claims (Insurer’s risk)
100 7.40 7.40
50 9.92 9.38
20 16.37 12.08
10 22.26 14.86

Figure 9: Visual Assistance and Validation. Risk surfaces with three different color marked
contracts. Green point values calculated by both methods are comparable (low value
for both methods), while the risk of the red and the magenta points are not.

3.5 Visual Assistance and Validation Tool

Because of the visibility of our method, it can be used as an assistance tool to validate the results
derived from other methods. FIGURE 9 shows the risk surfaces of two methods, together with a
choice of three contracts whose risk we designate by three colored points. Note that the risk values
of the green points are comparable between the two methods (low value for both), while the red and
the magenta points are not. This means that the insurer can validate his results by comparing it to our
results and take precaution steps in case of disagreement between the methods. One can argue that
there is no need to use our method as a validation tool, and that any other risk estimation method can
serve this function. Theoretically this is correct, but in practice this is not feasible for an arbitrary
method. The reason behind our argument lies in the regularity and relative smoothness of our risk
surface, versus the apparent non-regularity of the Rinsurer. Consequently, the use of Rinsurer as a
validation tool will produce an instability of the results since geometrically close points can have
very different risk values, and thus severely compromise its reliability.
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4. DISCUSSION

In this work, we have presented an auto insurance risk estimation method which takes advantage
of t-SNE based visualization together with a neural network. Using data from an auto insurance
company we have demonstrated that the complexity of the risk can be reduced to a smooth two-
dimensional surface. The surface exhibited clear and visible separation into three distinct risk
groups, which allow the insurer a visual validation of the risk estimation. For example, by making
a direct estimation from the original R14 space, one can now validate whether this estimation is
consistent with an appropriate region in R2. We compared the performance of our method to the
performance of the original Insurer’s risk estimation and showed that indeed our method is superior
in separating the risk groups.

We should point out that the notion of visibility, a predominant part in the structure of our method, is
different from the notion of explainability, which aims to explain the influence of specific parameters
on the risk estimation. We intend to address this issue in future research. We also intend to
investigate other dimensional reduction techniques such as UMAP [23], as well as the risk surface
construction method, which might have an influence on the final results.
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