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Abstract
The numbers of persons who can be enrolled by their iris patterns with no identity colli-
sions is studied in relation to the biometric entropy extracted, and the decision operating
threshold. The population size at which identity collision becomes likelier than not, given
those variables, defines iris “capacity.” The general solution to this combinatorial problem
is derived, in analogy with the well-known “birthday problem.” Its application to unique
biometric identification on national population scales is shown, referencing empirical data
from US NIST (National Institute of Standards and Technology) trials involving 1.2 trillion
(1.2 × 1012) iris comparisons. The entropy of a given person’s two iris patterns suffices for
global identity uniqueness.
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1. INTRODUCTION

Applicants for Cambridge University undergraduate studies in mathematics or computer science
are asked sometimes in their College interviews to reason about the “birthday problem”: how many
people, chosen at random, must be assembled until it becomes more likely than not that at least one
pair of them have the same birthday? Some students are surprised that the answer is only 23 people.
Although arriving at the exact number requires a calculator, the reasoning is that 𝑁 people make
𝑁 (𝑁−1)/2 possible pairings. Given that each pairing has probability 1/365 of sharing their birthday
and 364/365 of not, the probability that none of the pairings share a birthday is approximately
(364/365)𝑁 (𝑁−1)/2, which is < 0.5 once 𝑁 ≥ 23.

There is a clear analogy with biometric collision avoidance, which we can formulate as the:

Biometric birthday problem: if some biometric technology is operating with a veri-
fication FMR (“one-to-one” False Match Rate), how many people, chosen at random,
must be assembled until it becomes more likely than not that at least one pair of them
have a biometric collision (are falsely matched to each other)?
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A good example is face recognition, tested across a broad variety of scenarios and using a wide
range of image quality, for which a good performance benchmark corresponds to making just one
verification False Match in 1,000 non-mated comparisons [1–3]. That accuracy standard is better
than human (even “super-recogniser”) performance in some circumstances [3]. Face recognition
algorithms have improved greatly in recent years, in terms of Rank-1 identification rates [1, 2], in
test protocols inwhich a correctmatch does always exist within a search gallery that is populated also
with other “distractors”. But even in the recent tests, the best algorithms do still make some False
Matches to distractor images even when there are only 100 distractors [1, 2], despite the presence
of a correct match within the gallery, that should instead actually be returned at Rank-1.

Let us now consider the “biometric birthday problem” for a face recognition algorithm performing
at FMR = 0.001 when examining a gallery of non-mated faces. How large must this gallery get
before False Matches become likelier than not, in all-versus-all comparisons? The answer: just 38.
That number creates 38 · 37/2 = 703 possible pairings to consider, and (1 − 0.001)703 = 0.495 so
False Matches are then already likelier than not. When waiting at Passport Control (or some other
such queue), it is entertaining to turn around, look at the first 38 persons standing behind oneself,
and try to spot the pair of facial doppelgängers [4], among them.

Biometric deployments at a national or even prospectively at the planetary scale face a massively
challenging biometric “birthday problem” if they need to search for any duplicate identities, as was
necessary in India when all 1.4 billion citizens were recently enrolled in a national ID programme for
welfare distribution, government services, and subsidies (UIDAI: Unique IDentification Authority
of India) [5]. Because enrollees had an incentive to acquire multiple identities and thereby issuance
of multiple subsidies, every new enrollment had to be compared against all existing enrollments
before an Aadhaar would be issued. This amounts to a search for identity collisions, all-versus-all,
among an astronomical 𝑁 (𝑁 − 1)/2 pairings of persons. Obviously any attempt to do this by face
recognition would drown in False Matches from the very beginning. There simply is not enough
entropy, or randomness, in human face structure; the necessary functional purposes of major facial
features (mouth, nose, ocular areas) constrain their possible randomness. The bilateral symmetry
normally present in a face further reduces its entropy by half. The key idea, the fundamental factor
underlying the power of biometric identification, is entropy [6, 7].

Weak biometrics may be sufficient to enable “one-to-one” verification; stronger biometrics may
enable identification in a search database of size 𝑁 , “one-to-few” or “one-to-many” depending on
𝑁; but de-duplication applications exemplify the birthday problem in that they are essentially “all-
versus-all”, and the number of False Match opportunities they must survive grows massively with
𝑁 . In such deployments on a national scale, falsely detected or undetected identity collisions (even
if few in percentage) would lead to reduced public confidence in and acceptance of the system, its
impaired functionality, and legal problems caused both by undetected duplicates and falsely detected
ones. TABLE 1 presents, for a broad range of FMR levels spanning 15 orders-of-magnitude, how
large 𝑁 can get before collisions become likelier than not. TABLE I clearly shows that the demands
for a minuscule FMR become extremely daunting once the population size 𝑁 is even that of a small
town, let alone a population of national, continental, or of planetary scale.
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Table 1: Accuracy Requirements for Biometric Collision Avoidance

Verification FMR Critical Population Size 𝑁

0.001 38 persons
0.0001 119 persons
10−5 373 persons
10−6 1,177 persons
10−9 37,229 persons
10−12 1.2 million persons
10−15 37 million persons
10−18 1.2 billion persons

2. GENERAL SOLUTION FOR POPULATION BOUNDS

The number of pairings possible among 𝑁 persons is 𝑁 (𝑁−1)/2 because each person can be paired
with 𝑁 − 1 others, but half of these are redundant (e.g. Alice and Bob, then also Bob and Alice);
hence the halving. If a biometric technology is operating at some verification False Match Rate
FMR, then the probability of a given pairing not resulting in a False Match is (1 − FMR), and the
probability that none of the possible pairings do so is (1 − FMR)𝑁 (𝑁−1)/2. For what value of 𝑁
does this expression become < 0.5, and therefore a biometric collision becomes likelier than not?

We will invoke a property of the base 𝑒 “natural logarithm” function log𝑒=2.718... ( ), commonly
denoted ln( ). We seek:

(1 − FMR)𝑁 (𝑁−1)/2 < 0.5 (1)

ln
(
(1 − FMR)𝑁 (𝑁−1)/2

)
< ln(0.5) (2)

𝑁 (𝑁 − 1)
2

ln(1 − FMR) < −0.693 (3)

Now using the power series expansion

ln(1 + 𝑥) = 𝑥 − 𝑥2

2
+ 𝑥3

3
− 𝑥4

4
+ · · · , (4)

we have ln(1 + 𝑥) ≈ 𝑥 for small |𝑥 |, whether 𝑥 ≥ 0 or 𝑥 < 0. Basically this reflects the fact that
the logarithm function is linear near where it crosses 0 at log(1), and the slope of this line is 1 if the
base of the logarithm is 𝑒. Thus for any small FMR (say < 0.01), which also entails that 𝑁2 ≫ 𝑁 ,
we have

−𝑁 (𝑁 − 1)
2

FMR ≲ −0.693 (5)

𝑁2 ≳ 1.386/FMR (6)

𝑁 ≳
√

1.386/FMR (7)
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This general (but approximated) solution can be confirmed by evaluating (1) exactly, using for
𝑁 each of the corresponding FMR cases tabulated in TABLE 1, insofar as the available tools of
calculation can handle the combinatorial exponents required in (1) when 𝑁 is large.

3. BIOMETRIC ENTROPY TO THE RESCUE

Entropy measures the complexity and randomness [6], that is present in (and between) random
variables. Facial structure has limited capacity for randomness. The major facial features have a
canonical standard configuration, usually with bilateral symmetry; the eyes are normally on opposite
sides of the nose. Much greater randomness is found in iris patterns, and this is the origin of their
legendary resistance to False Matches. Although often there do exist strong radial correlations
within an iris, with mutual information as large as 0.3 bits per bit across radius [8], and also IrisCode
bits at adjacent or nearby angles but a shared radial coordinate have “sticky oscillator” correlations
that reduce their entropy as much as 0.5 bits per bit [7], nevertheless the remaining entropy is
vast. FIGURE 1 illustrates this graphically in the bit streams that constitute the IrisCodes of four
different eyes. How IrisCodes are computed has been revealed previously [9]. The two bit values are
equiprobable, so when bits in IrisCodes from two different eyes are compared by XOR (Exclusive-
OR) to detect whether they agree or disagree, these outcomes again are equiprobable, amounting to
the toss of a fair coin.

The non-independence among the bits in a given IrisCode reduces their collective entropy fromwhat
would have been a maximum of 2,048 bits (if each bit corresponded to an independent “fair coin
toss” Bernoulli trial) to only about 245 bits. Modelled as a “sticky oscillator” Markov process [7],
IrisCode bits exhibit a phase coherence that can persist across several bits. Despite such losses in
entropy, enough entropy remains that the collision probability between two IrisCodes from different
eyes attenuates by astronomical factors, for small reductions in the tolerated fraction of disagreeing
bits.

4. DISCUSSION

A good way to understand this effect intuitively is to consider tossing a fair coin in runs of 245
tosses, tallying each run’s fraction of heads. The total number of possible outcome sequences is
2245 and each of these has the same probability, namely 𝑝𝑖 = 2−245 (including, say, the “all heads”
sequence). The entropy [6], contained in these possible sequences is:

𝐻 = −
∑
𝑖

𝑝𝑖 log2(𝑝𝑖) (8)

= −
2245∑
𝑖=1

2−245 log2(2−245) = 245 bits. (9)

The vast majority of these sequences will have a nearly equal mix of heads and tails. The fraction of
possible sequences that have (say) fewer than 30% heads is less than one-billionth of the total. This
combinatorial property when large entropy (245 bits) exists in a random variable is ultimately the
reason why, for iris recognition, a match between two IrisCodes can be accepted even when (say)
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Figure 1: Representation of the IrisCodes [9], produced by four different eyes. The eight rows
within each can be regarded as eight concentric rings, each encoding a [0, 2𝜋] traversal
around the iris. (Eyelid masking is not shown.)
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30% of their bits disagree due to problematic image acquisition. Despite such a lenient criterion
being so tolerant of noisy bits, the probability that such an accepted match would actually be a False
Match is, indeed, less than 1 in a billion.

The huge exponents appearing in (9) (note that 2245 ≈ 1074) are key to understanding why sufficient
entropy is the basis for biometric collision avoidance even at a planetary scale. A detailed tabulation
of the relevant probability distributions, both densities and their cumulatives [9], with and without
selecting for best matches after multiple image rotations to compensate for unknown head and
camera tilt, is provided at [10], as a function of Hamming distance HD (fraction of bits that disagree
in IrisCodes from two different eyes). This probability table enables us to predict how tolerant we
can be of poor image acquisition (how large a fraction HD of disagreeing bits we can tolerate and
still declare a match), without resulting in False Matches. The TABLE [10], shows for acceptance
criteria HD the resulting False Match probability, and its log10 (last two columns).

TABLE 2 extracts coarser HD increments of 0.01 from [10] (first column), showing the correspond-
ing FMR predictions (second column). By 2003 image databases were only large enough to perform
about 10 million iris cross-comparisons [9] but distribution parameters could be estimated, implying
249 bits of entropy (slightly more than 245), predicting FMR performance very similar to what is
shown in TABLE 2. No False Matches were observed below roughly the HD = 0.33 criterion, for
the small databases available. The predicted FMR values were generally dismissed with incredulity
[11], because such FMR performance was unknown in other biometrics. But subsequently, other
NIST researchers did actually perform billions [12], and then more than a trillion iris comparisons
[13], obtaining FMR values in good agreement with those predictions, as reported in column 3.

Table 2: False Match Rates Predicted in [10], and as Measured by NIST [12], with 1.16 Billion Iris
Comparisons, and [13], with 1.2 Trillion Iris Comparisons

HD criterion FMR predicted in [10] NIST [12, 13] measured FMR

0.36 1 in 24,000 1 in 25,000
0.35 1 in 110,000 1 in 71,000
0.34 1 in 556,000 1 in 476,000
0.33 1 in 3.1 million 1 in 3.4 million
0.32 1 in 20 million 1 in 24 million
0.31 1 in 137 million 1 in 165 million
0.30 1 in 1.1 billion 1 in 2 billion
0.29 1 in 9 billion (not measured)
0.28 1 in 92 billion 1 in 40 billion

An important cause of skepticism about the FMR performance levels shown in TABLE 2, before
they were eventually confirmed by NIST, was the existence of ‘ground-truth’ errors in early bio-
metric databases that had created illusory identity collisions. Apart from sloppy and naïve data
collection, (e.g. incentivising paid student volunteers to change names and thereby enroll multiple
times), there is an inherent risk in estimating FMR by intra-dataset cross-comparisons. If even just
one of 𝑁 subjects is enrolled under two different identities, whether deviously or just through an
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innocent clerical error, the estimated FMR then cannot be better than 2/𝑁2. The measured threshold
calibration of FMR such as tabulated in TABLE 2, must then approach a floor, corresponding to this
illusory FMR, which cannot be reduced by any reasonable change in threshold, and indeed NIST
[12] demonstrated this problem for (university-sourced) intra-dataset comparisons.

NIST overcame this problem by performing inter-dataset comparisons: if two disjoint populations,
of sizes (say) 𝑁 and 𝑀 in geographically remote places can be biometrically enrolled, then 𝑁 × 𝑀
inter-comparisons become possible without the contaminating effect of ground-truth errors. NIST
[13] acquired enrollment datasets for two populations “very well separated geographically and
occupationally,” one having 3.9 million iris images used as the gallery, and the other having 315,000
iris images used as probes to search against this entire gallery, asserting there was zero likelihood of
co-membership. Thereby NIST performed 𝑁×𝑀 = 1.2 trillion IrisCode comparisons, leading to the
FMR results shown in column 3 of TABLE 2 (from [13] p. 61), for various HD threshold criteria.
This close confirmation of theory (column 2), manipulating FMR over a larger than million-fold
range, is striking.

5. DEMOGRAPHIC SPECIFIC APPLICATION

Iris pattern entropy differs somewhat across ethnic groups [14]. For example, the anterior layer
of the iris in persons of Sub-Saharan African descent contains a thick blanket of melanocytes [15]
creating a coarser texture of crypts and craters, than the finer fibrous details typically visible in an iris
of persons descended from more northern regions. FIGURE 2 illustrates these entropy differences
in samples from three demographies: West African; Irish-American; and Nordic.

Using image databases having particular ethnic demographics, it is possible to estimate quantita-
tively their characteristic entropies. Such calculations are needed in order to understand how many
persons can be enrolled before identity clashes in “all-versus-all” cross-comparisons (at a given
acceptance operating criterion), start to become likely. FIGURE 3 illustrates this process for a
new West African database of iris images [14] “AFHIRIS”, plotting the distribution of Hamming
distances (HD, fraction of bits that disagree) between all possible pairings of IrisCodes for different
eyes. The red curve is a plot of the following probability distribution prob(HD) for the fraction of
Heads (HD) in a run of 𝑁 tosses of a coin whose probability of Heads is 𝑝 :

prob(HD) = 𝑁!
𝑚!(𝑁 − 𝑚)! 𝑝𝑚(1 − 𝑝) (𝑁−𝑚) (10)

where in this case 𝑁 = 228, 𝑝 = 0.5, and HD = 𝑚/𝑁 is the outcome fraction of 𝑁 Bernoulli trials
(e.g. observing 𝑚 Heads within a run of 𝑁 coin tosses). Measuring the std dev 𝜎 for an empirical
distribution of HD scores from independent pairings tells us the equivalent number of tosses of a
coin (having probability 𝑝 of Heads), namely 𝑁 = 𝑝(1− 𝑝)/𝜎2. The empirical distribution has 𝜎 =
0.0331, with 𝑝 ≈ 0.5 (mean HD) so each toss adds 1 bit of entropy. Therefore we estimate AFHIRIS
biometric entropy as 𝑁 = 228 bits. The fit in FIGURE 3, between the empirical distribution data
and the theoretical probability density curve (10) seems excellent.

As was visible in FIGURE 2, and investigated in [14], biometric entropy in iris patterns varies
among ethnic groups. The range observed spans from about 225 bits to 265 bits. Those values
impact the False Match Rates for any given operating point (with higher entropy reducing the
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Figure 2: Entropy differences in iris patterns from three different demographic groups: West
African (top); Irish-American (middle); and Nordic (bottom).
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Figure 3: Empirical histogram of “all-versus-all” cross-comparison Hamming distance scores
observed in the West African iris image database AFHIRIS, superimposed with the
theoretical bionomial probability density distribution (red curve) which plots (10) using
parameters 𝑝 = 0.5 and 𝑁 = 228.
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Table 3: Numbers of Persons Enrollable, With All-Versus-All Iris Cross-Comparisons Unlikely
To Have Any Identity Collisions, For Two Operating Points. Single Eye Enrollment
Presumed.

Encoded Iris Entropy HDthreshold = 0.28 HDthreshold = 0.24

225 bits 134,000 persons 16 million persons
235 bits 222,000 persons 32 million persons
245 bits 370,000 persons 66 million persons
255 bits 615,000 persons 136 million persons
265 bits 1.02 million persons 278 million persons

FMR), and therefore they also affect how large a population of persons can be enrolled without
identity collisions in all-versus-all cross-comparisons. Such a concept is sometimes called biometric
“capacity” [16] for a given modality and operating point. We can now apply the framework that was
introduced at the beginning of this paper, the “biometric birthday problem,” to calculate iris capacity
across this observed range of entropies. For any given estimate of biometric entropy, the FMR at
a given operating point can be calculated as described in [9] and tabulated in [10] (for the case of
𝑁 = 245 bits of entropy). Using (7) we arrive at the numbers of persons who can be enrolled while
identity collision still remains unlikely. These numbers are presented in TABLE 3, for two different
HD operating thresholds and five estimates of entropy, always assuming single eye enrollment, to
illustrate the combined effects of these variables.

A way to estimate the scalability of face recognition systems was proposed by [16]. They defined
“face capacity” in terms of packing bounds: the ratio of the total volume in a representation space,
to the volume that is required to represent individual faces in it (as separate spheres or ellipsoids).
This yields an extreme upper bound estimate of capacity, because there is no way to ensure that the
spheres or ellipsoids for different faces do not overlap. Such collisions or overlaps certainly occur
for identical twins, and even for unrelated persons who are facial doppelgängers (as illustrated in
this collage [4] of examples.) Recent tests by NIST [2] show that current face recognition algorithms
fail completely to distinguish between identical twins. About 1% of persons have an identical twin,
so in any sufficiently broad sample, face representations must suffer identity clashes for at least
those 1%. By contrast, it is well-known that the IrisCode produces as much distance between the
encoded iris patterns of identical twins (or indeed between the two eyes of any given person) as
between unrelated eyes [9].

6. CONCLUSION

Iris recognition is perhaps unique among biometrics in having clear mathematical foundations, en-
abling strong predictions about IrisCode collision likelihood as a function of the decision threshold.
As shown in TABLE 2, for decision criteria in which nomore than about 31% of the IrisCode bits are
allowed to disagree when declaring a match (which is a very noise-tolerant criterion), the predicted
FMR attenuates by almost a factor of 10 for each additional 1% reduction in the tolerated amount
of bit disagreement. This extraordinary fact seems not to be generally understood or appreciated;
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but it is a direct result of using high-entropy random variables in biometric codes. A critical lesson
emerging here is the same as a lesson from cryptography: the great power of randomness, if you
can get enough of it.

As confirmed independently by NIST in [13], the slope of the IrisCode Decision Error Trade-off
curves is so flat that the FMR can be lowered by a factor of 10,000 to 100,000 while not even
doubling the False non-Match rate (FnMR). A consequence of this relationship is that only small
costs in increased FnMRneed be paid, by loweringHD threshold, in order to increase greatly the size
of a biometrically enrolled population without suffering collisions. Thus for IrisCodes from any two
different eyes, the probability of HD ≤ 0.29 is about 10−10. If we also exploit the fact that a person’s
two eyes generate IrisCodes that are almost completely independent, specifying 0.29 as a match
criterion binocularly would yield a fusion FMR of about 10−20. Equation (7) shows us that this is
how the planetary human population can survive the “biometric birthday problem”: it is unlikely
that even a single pairing among 12 billion persons (despite the vast numbers of possible pairings)
would disagree in ≤ 29% of their IrisCode bits for both pairs of eyes. Thus speaks biometric entropy.
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