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Abstract
Developing interpretable machine learning models has become an increasingly important
issue. One way in which data scientists have been able to develop interpretable models has
been to use dimension reduction techniques. In this paper, we examine several dimension
reduction techniques including two recent approaches developed in the network psychomet-
rics literature called exploratory graph analysis (EGA) and unique variable analysis (UVA).
We compared EGA and UVA with two other dimension reduction techniques common in
the machine learning literature (principal component analysis and independent component
analysis) as well as no reduction in the variables. We show that EGA and UVA perform as
well as the other reduction techniques or no reduction. Consistent with previous literature,
we show that dimension reduction can decrease, increase, or provide the same accuracy as
no reduction of variables. Our tentative results find that dimension reduction tends to lead to
better performance when used for classification tasks.

Keywords: Dimension reduction, Exploratory Graph analysis, PCA, ICA, Machine learn-
ing, Interpretability

1. INTRODUCTION

Machine learning has proliferated across science and impacted domains such as biology, chemistry,
economics, neuroscience, physics, and psychology. In nearly all scientific domains, new technology
has allowed for more data to be collected leading to high-dimensional data. With increasingly
complex data, the parameters of the machine learning algorithms exponentially increase leading
to issues in interpretability. Solutions to this issue requires either careful feature engineering,
feature selection, regularization or some combination of them. In this paper, we focus on feature
engineering by way of dimension reduction.
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The goal of dimension reduction within machine learning is to reduce the number of variables
to a refined set of variables that retain the maximum variance explainable in the whole set that
then maximizes prediction. The standard method in machine learning has been to apply Principal
Component Analysis (PCA). PCA attempts to find a linear combination of dimensions that are
uncorrelated (or orthogonal) and adequately explain the majority of variance between all variables
in the dataset. The utility of PCA in machine learning contexts is clear: variables are embedded in
a reduced dimension space that maximizes their distinct variance from other dimensions. Given the
congruence between the goals of dimension reduction within machine learning and the function
of PCA, it’s not surprising that the method has become the go-to choice for machine learning
researchers.

Should PCA be the de facto dimension reduction method? Previous work examining the effects of
different dimension reduction techniques within machine learning algorithms is sparse. Reddy and
colleagues [1] tested PCA and linear discriminant analysis (LDA) against no dimension reduction
on cardiotocography data. They found that PCA performed better than no reduction when the
number of features was high. Similar work has found that PCA tends to perform as well as or better
than no reduction [2, 3]. These studies, however, have been limited to examining classification
tasks only and very specific applications (e.g., cardiotocography, internet of things, bot detection).
Whether PCA should be routinely applied to data before using machine learning algorithms is an
open question that we aim to address.

Other commonly used dimension reduction techniques include independent component analysis
(ICA). ICA is similar to PCA in that it tries to linearly separate variables into dimensions that are
statistically independent rather than uncorrelated. This function is the major difference between
their goals: PCA seeks to maximize explained variance in each dimension such that dimensions are
uncorrelated whereas ICA seeks to identify underlying dimensions that are statistically independent
(maximizing variance explained is not an objective). Similar to PCA, there is a strong congruence
between the goals of dimension reduction within machine learning and ICA. With statistically
independent dimensions, the data are separated into completely unique dimensions. This property
ensures that the predicted variance of an outcome is explained uniquely by each dimension. One
advantage ICA has over PCA is that it can work well with non-Gaussian data and therefore does
not require variables to be normalized. ICA is commonly used in face recognition [4] as well as
neuroscience to identify distinct connectivity patterns between regions of the brain [5, 6].

PCA and ICA are perhaps the two most commonly used dimension reduction methods in machine
learning. Despite their common usage, few studies have systematically evaluated whether one
should be preferred when it comes to classification or regression tasks. Similarly, few studies, to our
knowledge, have examined the extent to which dimension reduction improves prediction accuracy
relative to no data reduction at all. Beyond PCA and ICA, there are other dimension reduction
methods that offer different advantages that could potentially be useful in machine learning frame-
works. Supervised methods, such as sufficient dimension reduction techniques [7], are common in
literature, but for the purpose of this paper we focus on unsupervised methods from the network
psychometrics literature in psychology.

Exploratory graph analysis (EGA) and unique variable analysis (UVA) are methods that have re-
cently emerged in the field of network psychometrics [8]. These techniques build off of graph theory
and social network analysis techniques to identify dimensions in multivariate data. EGA is often
compared to PCA in simulations that mirror common psychological data structures [9, 10, 11]. UVA,
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in contrast, rose out of a need to identify whether variables are redundant (e.g., multicollinearity,
locally dependent) with one another and could be reduced to single, unique variables [12]. Given
the goal of dimension reduction in machine learning, these two approaches seem potentially use-
ful for reducing high-dimensional data and identifying unique, non-redundant sources of variance
(respectively).

In the present study, we compare PCA, ICA, EGA, UVA, and no reduction on 14 different data sets,
seven classification tasks and seven regression tasks. Themain aims of this paper are to (1) introduce
two alternative dimension reduction methods to the machine learning literature, (2) compare these
and the other dimension reduction methods against each other as well as no reduction to the data on
a variety of data types and tasks, and (3) examine features of data that lead to dimension reduction
improving machine learning algorithms prediction over no reduction. The paper is outlined as
follows: section two defines and formalizes EGA and UVA, section three explains the data and
procedures in detail, section four reports the results, and section five provides our concluding
remarks.

2. Psychometric Dimension Reduction

2.1 Exploratory Graph Analysis

Exploratory graph analyses (EGA) begins by representing the relationship among variables with the
Gaussian graphical model (GGM) with the graph 𝐺 = {𝑣𝑖 , 𝑒𝑖 𝑗}, where node 𝑣𝑖 represents the 𝑖𝑡ℎ
variable and the edge 𝑒𝑖 𝑗 is the partial correlation between variable 𝑣𝑖 and 𝑣 𝑗 . Estimating a GGM
in psychology is often done using the EBICglasso [13, 14, 15], which applies the graphical least
absolute shrinkage and selection operator (GLASSO) [16, 17] to the inverse covariance matrix and
uses the extended Bayesian information criterion (EBIC) [18] to select the model.

To define the GLASSO regularization method, first assume y is a multivariate normal distribution:

y ∼ 𝑁 (0,Σ), (1)

where Σ is the population variance-covariance matrix. Let K denote the inverse covariance matrix:

K = Σ−1. (2)

K can be standardized to produce a partial correlation matrix with each element representing the
partial correlation between 𝑦𝑖 and 𝑦 𝑗 conditioned on all other variables (𝑦𝑖 , 𝑦 𝑗 |y−(𝑖, 𝑗 ) ) [19]:

Cor(𝑦𝑖 , 𝑦 𝑗 |y−(𝑖, 𝑗 ) ) = −
𝜅𝑖 𝑗√

𝜅𝑖𝑖
√
𝜅 𝑗 𝑗

, (3)

where 𝜅𝑖 𝑗 represents the 𝑖𝑡ℎ and 𝑗 𝑡ℎ element of K. The GLASSO regularization method aims to
estimate the inverse covariance matrix K by maximizing the penalized log-likelihood, which is
defined as [16]:

log det(K) − trace(SK) − 𝜆
∑
<𝑖, 𝑗>

|𝜅𝑖 𝑗 |, (4)
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where S represents the sample variance-covariance matrix. The 𝜆 parameter represents the penalty
on the log-likelihood such that larger values (larger penalty) results in a sparser (fewer non-zero
values) inverse covariance matrix. Conversely, smaller values (smaller penalty) results in a denser
(fewer zero values) inverse covariance matrix. A GLASSO network is represented as a partial
correlation matrix using Eq. 3.

Multiple values of 𝜆 are commonly used and model selection techniques such as cross-validation
[16] are applied to determine the best fitting model. In the psychometric literature, a more common
approach has been to apply the extended Bayesian information criterion (EBIC) [18] to select the 𝜆
parameter and best fitting model. The EBIC is defined as:

EBIC = −2𝐿 + 𝐸 log(𝑁) + 4𝛾𝐸 log(𝑃), (5)

where 𝐿 denotes log-likelihood, 𝑁 the number of observations, 𝐸 the number of non-zero elements
inK (edges), and 𝑃 the number of variables (nodes). Several 𝜆 values (e.g., 100) are selected from a
expotential set of values between 0 and 1. The default setting of this range is defined by a minimum-
maximum ratio typically set to 0.01 [14]. The 𝛾 parameter of the EBIC controls how much simpler
models (i.e., fewer non-zero edges) are preferred to more complex models (i.e., fewer zero edges).
The default setting for this parameter is typically set to 0.50 [15].

After estimating the GGM via the EBICglasso method, EGA estimates the number of dimensions
in the network using a community detection algorithm. There are many different community detec-
tion algorithms with some of the more commonly applied algorithms being the Walktrap [20] and
Louvain [9, 11, 21, 22, 23]. TheWalktrap algorithm uses random walks to obtain a transition matrix
that specifies how likely one node would be to ”step” to another node. On this transition matrix,
Ward’s hierarchical clustering algorithm [24] is applied to the transition matrix and modularity [25]
is used to decide the appropriate ”cut” or number of clusters should remain.

Modularity is also used as the primary objective function of the Louvain algorithm. Because of its
importance for these two algorithms, we define modularity (𝑄) [26]:

𝑑𝑖 =
𝑝∑
𝑖=1

𝑤𝑖 𝑗 , (6)

𝐷 =
1
2

𝑝∑
𝑖=1

𝑝∑
𝑗=1

𝑤𝑖 𝑗 , (7)

𝑄 =
1

2𝐷

𝑝∑
𝑖=1

𝑝∑
𝑗=1

[
𝑤𝑖 𝑗 −

𝑑𝑖𝑑 𝑗

2𝐷

]
𝛿(𝑐𝑖 , 𝑐 𝑗), (8)

where 𝑤𝑖 𝑗 is the weight (partial correlation) between node 𝑖 and node 𝑗 in the network, 𝑝 is the
number of nodes in the network, 𝑑𝑖 is the degree or sum of the edge weights connected to node 𝑖, 𝐷
is the total sum of all the edge weights in the network (eliminating the double counting of edges in a
symmetric network matrix), 𝛿(𝑐𝑖 , 𝑐 𝑗) is the Kronecker delta of the community membership indices
(𝑐) for node 𝑖 and 𝑗 , respectively.
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The Louvain algorithm works by starting with each node in its own community. Each node is then
iteratively switched into another community and placed into the community that has the greatest
increase in the modularity statistic (if there is no increase, then the node remains in its original
community). After the first pass, ”latent” nodes for each community are created by summing the
edge weights of the nodes belonging to each community. This process then repeats until either
modularity cannot be increased further or the resulting community structure is unidimensional (i.e.,
all nodes belong to a single community). The goal of the Louvain algorithm is to achieve maximum
modularity [21, 26].

Communities detected by these algorithms are statistically similar to dimensions in the data (e.g.,
PCA) [10]. In order to obtain values for each dimension, so-called ”network scores” are computed.
To obtain network scores, network loadings are first computed. Network loadings are statistically
similar to factor and component loadings [27].

Network loadings are computed by taking the standardized node strength (sum of each node’s
connections; Eq. 6) within and between each dimension. Network loadings are calculated following
Christensen and Golino [27]:

𝐿𝑖 𝑓 =
𝐹∑
𝑗∈ 𝑓

|𝑤𝑖 𝑗 |, (9)

where 𝐹 is the number of communities defined by a community detection algorithm, 𝐿𝑖 𝑓 represents
the loading of the node 𝑖 on community 𝑓 and 𝑗 ∈ 𝑓 are all nodes 𝑗 determined to be part of
community 𝑓 (as determined by the community detection algorithm). This measure is standardized
by:

ℵ𝐿𝑖 𝑓 =
𝐿𝑖 𝑓√∑𝑝
𝑖=1 𝐿𝑖 𝑓

. (10)

These standardized network loadings are represented in an 𝑖 × 𝑓 matrix, ℵ. The observed data, 𝑋 ,
are tranformed into network scores, 𝜃, following Golino et al. [28]:

𝑉 𝑓 =
ℵ 𝑓√∑𝑖∈ 𝑓

𝑖=1 (𝑋𝑖−𝑋𝑖 )2

𝑛−1

(11)

and

𝜃 𝑓 =
𝐹∑
𝑓 =1

𝑋𝑖∈ 𝑓

(
𝑉𝑖∈ 𝑓∑𝐹
𝑓 𝑉𝑖∈ 𝑓

)
(12)

where 𝑋𝑖 is the observed values for variable 𝑖, 𝑋𝑖 is the mean of variable 𝑖, 𝑛 is the number of
observations, 𝑉 𝑓 is the standardized network loadings of dimension 𝑓 (ℵ 𝑓 ) divided by the standard
deviation of the variables with non-zero loadings in dimension 𝑓 , and 𝜃 𝑓 are the network scores that
are computed by summing the product of each variable 𝑋 that has a non-zero loading in dimension
𝑓 and its corresponding relative loading weight.
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2.2 Unique Variable Analysis

Another network psychometrics approach that could be valuable in the context of reducing the
number of variables used in making predictions with machine learning algorithms is called Unique
Variable Analysis (UVA) [12]. The main goal of UVA is to reduce the dataset to a set of unique
variables. Rather than the reduction attempting to reduce to a minimal set of variables (like EGA,
ICA, and PCA), UVA does not reduce the number of variables unless two or more variables have
substantial shared variance.

UVA was developed to solve issues of local dependence in traditional psychometrics. Local depen-
dence is defined as two or more variables that possess potentially redundant information [29]. In the
context of a PCA model, local dependence would be reflected in substantial correlation(s) between
two (or more) variables’ residuals after extracting the components [30]. For machine learning,
UVA’s objective is to maximize the unique variance provided by each feature while minimizing the
redundant variance between features.

Like EGA, UVA starts by estimating a Gaussian graphical model using the EBICglasso. With
this network, a measure called weighted topological overlap is applied [31]. Weighted topological
overlap (𝜔) is defined as the similarity between a pair of nodes’ connections [32, 31]:

𝜔𝑖 𝑗 =

∑𝑝
𝑢=1 𝑤𝑖𝑢𝑤𝑢 𝑗 + 𝑤𝑖 𝑗

min{𝑑𝑖 , 𝑑 𝑗} + 1 − 𝑤𝑖 𝑗

where 𝑢 represents a connection that both node 𝑖 and 𝑗 have with some third node 𝑢.

In simulation studies, UVA is accurate at detecting when variables are statistically redundant (lo-
cally dependent) in data structures common in psychology [12]. Based on simulation evidence, a
threshold of 0.25 offers an optimal balance between false positives and overall accuracy. Using this
threshold, UVA combines variables that are greater than or equal to this threshold.

There are many ways to combine variables (including removing all but one of the locally dependent
variables) but the simplest is to sum (or average) them. UVA continues to iteratively re-assess
whether any local dependence remains, combining variables along the way. Once no local depen-
dence remains (i.e., all weighted topological overlap values are less than 0.25), then the process
stops. The result can run the spectrum of data reduction from no reduction (i.e., the original dataset
if no local dependence is identified) to dimension reductions equivalent to PCA, ICA, and EGA if
local dependence between variable sets correspond to the dimensions identified by these methods.
In sum, UVA offers a flexible middle ground between no data reduction and complete data reduction
(i.e., reduction equivalent to dimension reduction methods).

Relative to PCA and ICA, EGA and UVA are data driven. Among applied practitioners and data
scientists, this quality represents a substantive advantage and reduces the researcher degrees of free-
dom. UVA has the additional advantage of acting as a middle ground between complete dimension
reduction and no data reduction. Since UVA finds variables that are statistically redundant, not all
data is reduced and therefore may preserve some information that would be aggregated in other
dimension reduction methods.
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3. METHODS

3.1 Data

To evaluate the effectiveness of the different dimension reduction methods, we trained them on 14
different data sets, seven for regression and seven for classification. We chose to limit the data
sets by those that were: tabular data, more than 10 attributes (Mean = 125.8462, Min = 14, Max =
785), and had more than 100 instances (Mean = 14752.08, Min = 120, Max = 70000). Additionally,
we sampled data from a variety of domains including business, social sciences, physics, and life
sciences. For regression these included: blog feedback [33], communities and crime [34], Face-
book metrics [35], online news [36], Parkinson’s telemonitoring [37], superconductivity [38], and
skillcraft data [39]. Classification data included: breast cancer diagnosis, divorce [40], heart disease
[41], Modified National Institute of Standards and Technology (MNIST) [42], musical emotion [43],
sport articles objectivity [44], and wine data. All of these data, with the exception of the MNIST
can be found on the UCI machine learning repository [45]. We accessed a tabular version of the
MNIST data via Kaggle.

3.2 Procedure

We started by preproccessing all of our data to remove anymissing observations and categorical data
(except for the target variables in the classification tasks) as matrices. All data were tabular and were
reduced using PCA, ICA, EGA, and UVA. For the non-reduced data, we used the preproccessed
data for fair comparison. We used the R statistical software (version 4.13) [46] with the {EGAnet}
(version 1.2.0) [47] and {ica} (version 1.0.3) [48] packages. Number of components for PCA and
ICA were determined by examining variance explained via a scree plot.

Next, we trained and tuned the hyperparameters of the machine learning models using 75% of each
data set with 3-fold cross validation grid search. We used the mean squared error (RMSE) and
accuracy (ACC) for the refitting scores for regression and classification, respectively. Then we
tested the data on the other 25% of the data using the best parameters. Finally, to compare the
methods we used 5-fold cross validation on the full data set with the best selected parameters. We
trained on least absolute shrinkage operator (LASSO) and regularized logistic (Logit) for regression
and classification, respectively. All data was formatted as tabular {numpy} arrays to be used as
input for all machine learning models. For both tasks, we used random forests classifiers (RFC) and
random forest regressions (RFR), support vector machine (SVM), and extreme gradient boosted
trees (XGB). All machine learning models were done in Python with the {sklearn} (version 1.1.2)
[49] and {XGBoost} (version 1.4.2) [50] modules. We compared models with root mean squared
error (RMSE) and accuracy (ACC). This process is shown below in FIGURE 1.

All R and python scripts and data used in the analyses are available on the GitHub repository.
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Figure 1: Experimental processes

4. MACHINE LEARNING RESULTS

Using analysis of variance (ANOVA), we compared between each method’s performance in re-
gression and classification accuracy. These ANOVAs were followed up using Bonferoni pairwise
comparison to determine differences between specific methods. We report the F-statistic (𝐹), p-
values (𝑝), and the variance explained (𝜂2) for the overall ANOVA comparisons. Additionally, we
report the p-values (𝑝) and Cohen’s D (𝑑) for the pairwise comparisons.

4.1 Regression

There were moderate significant differences across reduction methods, 𝐹 (4, 686) = 8.20, 𝑝 <
.001, 𝜂2

𝑝 = 0.05. EGA had significantly higher RMSE than ICA across data (𝑝 < .001, 𝑑 = 0.53)
but did not differ from PCA (𝑝 = 1.00, 𝑑 = 0.04), UVA (𝑝 = 1.00, 𝑑 = 0.05), or no reduction
(𝑝 = 0.59, 𝑑 = 0.17). ICA had significantly lower RMSE than PCA (𝑝 < .001, 𝑑 = 0.56), UVA
(𝑝 < .001, 𝑑 = 0.57, and no reduction (𝑝 = 0.03, 𝑑 = 0.35. PCA did not significantly differ from
UVA (𝑝 = 1.00, 𝑑 = 0.01) and no reduction (𝑝 = 0.38, 𝑑 = 0.21). UVA did not significantly differ
from no reduction (𝑝 = 0.35, 𝑑 = 0.22)

On a more granular level, we examine how each method compared on each data set. Results shown
in FIGURE 2. There no significant differences in the blog data, 𝐹 (4, 92) = 0.34, 𝑝 = .85, 𝜂2

𝑝 = 0.01
or news data, 𝐹 (4, 92) = 0.00, 𝑝 = 1.00, 𝜂2

𝑝 = 0.00. The best method and algorithm combination for
the blog data was UVA with LASSO (RMSE = 38.313) and for the new data was no data reduction
with LASSO ( ¯𝑅𝑀𝑆𝐸 = 11023.107).

There were significant differences in the crime data, 𝐹 (4, 92) = 10.01, 𝑝 < .001, 𝜂2
𝑝 = 0.30: EGA

had lower RMSE than ICA (𝑝 = 0.04, 𝑑 = 0.90) and PCA (𝑝 = 0.001, 𝑑 = 1.26), ICA had higher
RMSE than no reduction (𝑝 < .001, 𝑑 = 1.38), PCA had higher RMSE than no reduction (𝑝 <
.001, 𝑑 = 1.74) and UVA (𝑝 = 0.003, 𝑑 = 1.17). The best method and algorithm combination for
the crime data was no data reduction with random forest ( ¯𝑅𝑀𝑆𝐸 = 0.138).

There were significant differences in the Facebook data, 𝐹 (4, 92) = 13.32, 𝑝 < .001, 𝜂2
𝑝 = 0.37:

ICA had lower RMSE than EGA (𝑝 < .001, 𝑑 = 1.77), PCA (𝑝 < .001, 𝑑 = 1.90), UVA (𝑝 <
.001, 𝑑 = 1.93), and no reduction (𝑝 = 0.003, 𝑑 = 1.19). The best method and algorithm combina-
tion for the Facebook data was ICA with random forest ( ¯𝑅𝑀𝑆𝐸 = 2.151).
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There were significant differences in the Parkinson’s data, 𝐹 (4, 92) = 24.63, 𝑝 < .001, 𝜂2
𝑝 = 0.52:

EGA had significantly higher RMSE than ICA (𝑝 < .001, 𝑑 = 2.03), UVA (𝑝 < .001, 𝑑 = 1.85),
and no reduction (𝑝 < .001, 𝑑 = 2.22), PCA similarly had significantly higher RMSE than ICA
(𝑝 < .001, 𝑑 = 1.99), UVA (𝑝 < .001, 𝑑 = 1.81), and no reduction (𝑝 < .001, 𝑑 = 2.18). The
best method and algorithm combination for the Parkinson’s data was UVA with LASSO ( ¯𝑅𝑀𝑆𝐸 =
3.680).

There were significant differences in the superconductor data, 𝐹 (4, 92) = 5.70, 𝑝 < .001, 𝜂2
𝑝 =

0.20: ICA had significantly higher RMSE than EGA (𝑝 = 0.01, 𝑑 = 2.03), PCA (𝑝 = 0.03, 𝑑 =
0.93), UVA (𝑝 = .002, 𝑑 = 1.21), and no reduction (𝑝 < .001, 𝑑 = 1.36). The best method
and algorithm combination for the superconductor data was no data reduction with random forest
( ¯𝑅𝑀𝑆𝐸 = 12.680).

There were significant differences in the skillcraft data, 𝐹 (4, 92) = 22.03, 𝑝 < .001, 𝜂2
𝑝 = 0.49:

UVA had significantly higher RMSE than EGA (𝑝 < 0.01, 𝑑 = 1.81), ICA (𝑝 < .001, 𝑑 = 2.00),
PCA (𝑝 < .001, 𝑑 = 2.40), and no reduction (𝑝 < .001, 𝑑 = 2.68). The best method and algorithm
combination for the skillcraft data was no data reduction with random forest ( ¯𝑅𝑀𝑆𝐸 = 0.994).

4.2 Classification

Therewere small-to-moderate significant differences across reductionmethods, 𝐹 (4, 686) = 5.48, 𝑝 <
.001, 𝜂2

𝑝 = 0.03. EGA had lower accuracy than ICA (𝑝 = 0.02, 𝑑 = 0.38) and PCA (𝑝 < .001, 𝑑 =
0.48) but did not differ fromUVA (𝑝 = 0.68, 𝑑 = 0.16) and no reduction (𝑝 = 0.85, 𝑑 = 0.12) across
data. ICA did not differ in accuracy from PCA (𝑝 = 0.89, 𝑑 = 0.11), UVA (𝑝 = 0.36, 𝑑 = 0.22),
and no reduction (𝑝 = 0.20, 𝑑 = 0.26). PCA was more accurate than UVA (𝑝 = 0.05, 𝑑 = 0.33) and
no reduction (𝑝 = 0.02, 𝑑 = 0.37). UVA did not differ from no reduction (𝑝 = 1.00, 𝑑 = 0.04).

On a more granular level, we examine how each method compared on each data set. Results shown
in FIGURE 3. There no significant differences in the cancer data, 𝐹 (4, 92) = 0.23, 𝑝 = .92, 𝜂2

𝑝 =
0.01. The best method and algorithm combination for the cancer data was EGA and UVA with logit
( ¯𝐴𝐶𝐶 = 0.970).

Therewere significant differences in the divorce data, 𝐹 (4, 92) = 3.24, 𝑝 = .02, 𝜂2
𝑝 = 0.12: ICAwas

more accurate than no reduction (𝑝 = 0.02, 𝑑 = 0.97). Several method and algorithm combinations
had perfect accuracy ( ¯𝐴𝐶𝐶 = 1.000) for the divorce data: logit with EGA, ICA, PCA, and UVA;
random forest with ICA; all methods with SVM; XGB with EGA, ICA, and PCA.

There were significant differences in the heart data, 𝐹 (4, 92) = 9.38, 𝑝 < .001, 𝜂2
𝑝 = 0.29: EGA

(𝑝 = 0.002, 𝑑 = 1.21), ICA (𝑝 < .001, 𝑑 = 1.31), and PCA (𝑝 < 0.001, 𝑑 = 1.62), were more
accurate than no reduction. ICA (𝑝 = 0.03, 𝑑 = 0.94) and PCA (𝑝 = 0.001, 𝑑 = 1.26) were more
accurate than UVA. The best method and algorithm combination for the heart data was PCA and
UVA with random forest ( ¯𝐴𝐶𝐶 = 0.993).

There were significant differences in the MNIST data, 𝐹 (4, 92) = 95.94, 𝑝 < .001, 𝜂2
𝑝 = 0.81:

EGA had lower accuracy than ICA (𝑝 < .001, 𝑑 = 4.34), PCA (𝑝 < .001, 𝑑 = 4.18), UVA (𝑝 <
.001, 𝑑 = 5.27), and no reduction (𝑝 < .001, 𝑑 = 5.26). UVA had higher accuracy than ICA
(𝑝 = 0.03, 𝑑 = 0.94) and PCA (𝑝 = 0.007, 𝑑 = 1.10). Similarly, no reduction had higher accuracy
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Figure 2: Regression Results. Lower values means better performance.

than ICA (𝑝 = 0.03, 𝑑 = 0.92) and PCA (𝑝 = 0.007, 𝑑 = 1.09). The best method and algorithm
combination for the MNIST data was ICA with SVM ( ¯𝐴𝐶𝐶 = 0.982).

There were significant differences in the music data, 𝐹 (4, 92) = 11.09, 𝑝 < .001, 𝜂2
𝑝 = 0.33: EGA

(𝑝 = 0.002, 𝑑 = 1.23), ICA (𝑝 = 0.006, 𝑑 = 1.12), and PCA (𝑝 < .001, 𝑑 = 1.49) had higher
accuracy than UVA. Similarly, EGA (𝑝 < .001, 𝑑 = 1.34), ICA (𝑝 = 0.002, 𝑑 = 1.23), and PCA
(𝑝 < .001, 𝑑 = 1.60) had higher accuracy than no reduction. The best method and algorithm
combination for the music data was EGA with XGB ( ¯𝐴𝐶𝐶 = 1.00).

There were significant differences in the sports data, 𝐹 (4, 92) = 8.51, 𝑝 < .001, 𝜂2
𝑝 = 0.27: EGA

(𝑝 = 0.01, 𝑑 = 1.04), ICA (𝑝 = 0.01, 𝑑 = 1.04), and PCA (𝑝 = .002, 𝑑 = 1.23) had higher
accuracy than UVA. Similarly, EGA (𝑝 = 0.003, 𝑑 = 1.19), ICA (𝑝 = 0.003, 𝑑 = 1.19), and
PCA (𝑝 < .001, 𝑑 = 1.38) had higher accuracy than no reduction. Several method and algorithm
combinations had perfect accuracy ( ¯𝐴𝐶𝐶 = 1.000) for the sports data: random forest with EGA,
ICA, and PCA as well as all methods with XGB.
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Figure 3: Classification Results. Error bars are standard errors. y-axis begins at 0.70.

There were significant differences in the wine data, 𝐹 (4, 92) = 3.42, 𝑝 = .01, 𝜂2
𝑝 = 0.13: PCA

(𝑝 = 0.05, 𝑑 = 0.88) and no reduction (𝑝 = 0.05, 𝑑 = 0.88) had higher accuracy than UVA. Several
method and algorithm combinations had perfect accuracy ( ¯𝐴𝐶𝐶 = 1.000) for the wine data: logit
with EGA and PCA; random forest with EGA; SVM with PCA and no reduction; XGB with PCA
and no reduction.

4.3 Comparing Attributes

To better understand when certain reduction methods perform best, we regressed data attributes
interacting with each reduction method on the accuracy and RMSE of the data. We standardized
the RMSE so as to be comparable across data sets. We tested the number of attributes, number
of observations, and the mean kurtosis (kurt) using multiple regression. We report the estimated
parameters (𝑏) and the p-values (𝑝). We used no reduction as the reference group compared to
simple coded dummy variables corresponding to each reduction method (Table 1).
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In classification, we find that EGA performed better than no reduction when the number of attributes
(𝑏 = 0.001, 𝑝 < .001), the sample size(𝑏 = 0.000001, 𝑝 < .001), and the average kurtosis (𝑏 =
−0.001, 𝑝 < .001) increased. ICA was found to perform worse with increase in attributes (𝑏 =
−0.001, 𝑝 < .001), sample size (𝑏 = −0.00001, 𝑝 < .001), and mean kurtosis (𝑏 = −0.00002, 𝑝 <
.001). UVA and PCA was no different than no reduction on number of attributes, sample size, and
kurtosis.

We were not able to replicate these results in the regression data. ICA performed better than no
reduction when number of attributes classification (𝑏 = 0.008, 𝑝 < .01) and sample size (𝑏 =
0.00001, 𝑝 < .05) increased, but not kurtosis (𝑏 = −0.0001, 𝑝 > .05). PCA performed worse with
increase in attributes (𝑏 = −0.019, 𝑝 < .01) and sample size (𝑏 = −0.00002, 𝑝 < .001), but not
kurtosis (𝑏 = −0.001, 𝑝 > .05). UVA performed better with an increase in attributes (𝑏 = 0.005, 𝑝 <
.05) and EGA performed worse with an increase in kurtosis (𝑏 = −0.0002, 𝑝 < .05).

We believe that the results for the classification tasks were skewed by the MNIST data (much larger
sample and number attributes and no reduction performed was best). We re-ran these regressions
without the MNIST and found that there was no difference between reduction methods and no
reduction methods with increasing attributes, sample size, or kurtosis.

5. CONCLUSION

Feature engineering is one of the first steps toward maximizing prediction in machine learning
algorithms. Our work examined the effects of dimension reduction on data features using two
techniques common to the machine learning literature, PCA and ICA, and two techniques from
the network psychometrics literature, EGA and UVA. Overall, we find EGA and UVA perform just
as well as PCA, ICA, and no reduction. The predictive performance of each of these methods,
however, varied greatly depending on the data. EGA, PCA, and ICA tended to perform similarly
while UVA and no reduction tended to perform similarly. As a general trend, we found the best
method and algorithm pairs tended to be EGA, ICA, and PCA for the classification tasks, and UVA
and no reduction for the regression tasks.

Beyond task type, we examined this variability of performance in the attributes of the data. We
failed to replicate the results from Reddy and colleagues [1] that found PCA performed better than
no reduction when there is more attributes in the data. However, we did find evidence that EGA
performed better than no reduction when the number attributes, sample size, and kurtosis increased
on classification tasks. Given that we did not find this to be the case in the regression tasks or
replicable without the MNIST, it is not likely that these effects were much more than chance. While
our general trend found that dimension reduction may be more effective for classification tasks than
regression tasks, more research needs to be done. Future research should also examine how different
dimension reduction affects results of textual, visual, and audio data.

One surprising result was that ICA did not perform better with greater kurtosis in the data. Given
that ICA was designed for non-Gaussian, we might expect to it to perform well on this type of data.
On the other, hand we would expect EGA and PCA to perform worse given that both are designed
with Gaussian assumptions. We find that EGA performed better than no reduction method with
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Table 1: Attribute Results

Dependent variable:
Accuracy RMSE

(1) (2) (3) (4) (5) (6)
EGA −0.018∗∗∗ −0.015∗∗∗ −0.015∗∗∗ 0.502∗∗∗ 0.397∗∗∗ 0.392∗∗∗

(0.005) (0.005) (0.005) (0.147) (0.103) (0.089)
ICA 0.013∗∗∗ 0.007 0.007 −0.518∗∗∗ −0.307∗∗∗ −0.240∗∗∗

(0.005) (0.005) (0.005) (0.147) (0.103) (0.089)
PCA 0.006 0.007 0.007 0.959∗∗∗ 0.383∗∗∗ 0.183∗∗

(0.005) (0.005) (0.005) (0.147) (0.103) (0.089)
UVA 0.011∗∗ 0.011∗∗ 0.011∗∗ −0.360∗∗ −0.224∗∗ −0.183∗∗

(0.005) (0.005) (0.005) (0.147) (0.103) (0.089)
Attributes −0.0001∗∗∗ 0.000

(0.00001) (0.001)
N −0.00000∗∗∗ −0.000

(0.00000) (0.00000)
mean_kurt −0.00001∗∗∗ −0.000

(0.00000) (0.0001)
Algorithm1 −0.023∗∗∗ −0.023∗∗∗ −0.023∗∗∗ 0.002 0.002 0.002

(0.004) (0.004) (0.004) (0.067) (0.068) (0.069)
Algorithm2 −0.002 −0.002 −0.002 0.107 0.107 0.107

(0.004) (0.004) (0.004) (0.067) (0.068) (0.069)
Algorithm3 −0.0001 −0.0001 −0.0001 −0.030 −0.030 −0.030

(0.004) (0.004) (0.004) (0.067) (0.068) (0.069)
EGA:Attributes 0.0001∗∗∗ −0.004

(0.00002) (0.003)
ICA:Attributes −0.0001∗∗∗ 0.008∗∗

(0.00002) (0.003)
PCA:Attributes 0.00001 −0.019∗∗∗

(0.00002) (0.003)
UVA:Attributes −0.00000 0.005∗

(0.00002) (0.003)
EGA:N 0.00000∗∗∗ −0.00001

(0.00000) (0.00001)
ICA:N −0.00000∗∗∗ 0.00001∗

(0.00000) (0.00001)
PCA:N 0.00000 −0.00002∗∗∗

(0.00000) (0.00001)
UVA:N −0.00000 0.00001

(0.00000) (0.00001)
EGA:Mean kurt 0.00001∗∗∗ −0.0002∗

(0.00000) (0.0001)
ICA:Mean kurt −0.00002∗∗∗ 0.0001

(0.00000) (0.0001)

Continued on next page
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Table 1: Continued

Dependent variable:
Accuracy RMSE

(1) (2) (3) (4) (5) (6)
PCA:Mean kurt 0.00000 −0.0001

(0.00000) (0.0001)
UVA:Mean kurt −0.00000 0.0001

(0.00000) (0.0001)
Constant 0.963∗∗∗ 0.961∗∗∗ 0.961∗∗∗ −0.000 0.000 −0.000

(0.002) (0.002) (0.002) (0.073) (0.051) (0.045)
Observations 600 600 600 600 600 600
R2 0.288 0.292 0.293 0.125 0.073 0.054
Adjusted R2 0.273 0.278 0.278 0.108 0.054 0.034
Residual Std. Error (df = 587) 0.051 0.051 0.051 0.941 0.969 0.979
F Statistic (df = 12; 587) 19.791∗∗∗ 20.193∗∗∗ 20.236∗∗∗ 7.017∗∗∗ 3.855∗∗∗ 2.772∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

an increasing kurtosis in the data. One caveat to this might be that we used kurtosis instead of
negentropy where we might find ICA to perform better when negentropy is higher.

Broadly, dimension reduction appears to perform better than no reduction on classification tasks.
One view might be that with simplified data structures there is less noise stemming from unique
variance across different data features that make precise classification difficult. Conversely, this
same unique variance may improve performance on regression tasks. Indeed, regression perfor-
mance in the field of personality psychology has seen consistent and robust effects of individual
variables, termed personality nuances, outperforming more global traits that are identified by di-
mension reduction methods [51, 52, 53].

Our results demonstrated that EGA and UVA are robust methods that can be applied in machine
learning. They both provide the advantage of reducing researcher degrees of freedom by estimating
the number of dimensions and assigning features to those dimensions automatically. EGA is an
additional dimension reduction tool that can be added the machine learning practitioner’s toolbox
while UVA offers the reduction of features if there are features that may be redundant with one
another (e.g., multicollineary, locally dependent). An added benefit of modeling variables as a net-
work is that graph theorymeasures can be applied tomultivariate representations of data features that
could provide new features that are extracted from the relationships between them [54]. Whether
researchers should reduce the number of features of the data using dimension reduction methods
is specific to each dataset. We provide evidence that classification tasks can be improved with
dimension reduction methods while regression tasks are less affected. The combination of the task
type, method and algorithm combination, and attributes of the data all contribute to performance.
Untangling these components and their effects on performance remains an important direction for
machine learning.
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