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Abstract
High dimensional feature spaces can contain information onmultiple scales. At global scales,
spanning an entire feature space, covariance structure among dimensions can determine topol-
ogy and intrinsic dimensionality. In addition, local scale information can be captured by the
structure of low-dimensionalmanifolds embeddedwithin the high-dimensional feature space.
Such manifolds may not easily be resolved by the global covariance structure. Analysis
tools that preferentially operate at one scale can be ineffective at capturing all the infor-
mation present in cross-scale complexity. We propose a multiscale joint characterization
approach designed to exploit synergies between global and local approaches to dimension-
ality reduction. We illustrate this approach using Principal Components Analysis (PCA)
to characterize global variance structure and t-distributed Stochastic Neighbor Embedding
(t-SNE) to characterize local manifold structure, also comparing against a second approach
for characterization of local manifold structure, Laplacian Eigenmaps (LE). Using both low
dimensional synthetic images and high dimensional imaging spectroscopy data, we show
that joint characterization is capable of detecting and isolating signals which are not ev-
ident from either algorithm alone. Broadly, t-SNE is effective at rendering a randomly
oriented low-dimensional map of local manifolds (clustering), and PCA renders this map
interpretable by providing global, physically meaningful structure. LE provides additional
useful context by reinforcing and refining the feature space topology found by PCA, sim-
plifying structural interpretation, clarifying endmember identification and highlighting new
potential endmembers which are not evident from other methods alone. This approach is
illustrated using hyperspectral imagery of agriculture resolving crop-specific, field scale,
differencesin vegetation reflectance. The fundamental premise of joint characterization could
easily be extended to other high dimensional datasets, including image time series and non-
image data. The approach may prove particularly useful for other geospatial data since both
robust manifold structure (due to spatial autocorrelation) and physically interpretable global
variance structure (due to physical generative processes) are frequently present.

Keywords: PCA, t-SNE,Laplacian Eigenmaps, Imaging Spectroscopy, Dimensionality
reduction, Multiscale.
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1. INTRODUCTION

The challenge of high dimensional data analysis has been recognized for decades as critical for
scientific progress [1]. Physical, chemical, biological, geological, and astronomical instruments
routinely collect measurement streamswhich rapidly reach terabytes in volume. The Large Synoptic
Survey Telescope (under construction at time of writing) is expected to collect 20 terabytes of raw
data each night using a 3.2 gigapixel, 5-channel imaging system[2]; a single future NASA mission
for the Surface Biology and Geology designated observable is planned to collect – and downlink to
Earth – roughly 100 terabytes of >200-channel imagery per day [3]. Similar missions are planned
by others, including the European Space Agency and the private sector. As such data continue to
grow in size and complexity, novel algorithms are needed to extract relevant signals and mitigate
the effects of noise.

In high dimensional data, information can exist at different scales. Some information manifests as
global patterns – the overall structure of the feature spacebased on all the observations. Additional
information can be found in local manifold structure – often conceptualized as connectivity or
clustering relations among similar observations. In such cases, a meaningful signal may be well-
represented as a low-dimensional manifold embedded in a much higher dimensional feature space.
Given the wide range of scales at which meaningful information may exist within high dimensional
feature spaces, it is plausible that the same dataset may possess useful information at both global and
local scales. This situation, which we refer to as multiscale structure, may even be quite common.

Different analysis tools are designed to capture different scales of variability. The well-established
tool of Principal Component Analysis (PCA) [4], can be considered to reflect the global variance
structure of a dataset because it uses the covariability (correlation or covariance) structure of all
observations to apply a single, linear transform to the entire dataset. In contrast, more recent mani-
fold learning algorithms have sought to capture or retain local structure (e.g. Euclidean proximity),
for instance by using nearest neighbor-type approaches [5]. Both approaches have their merits.
Both can be useful analytic tools in some circumstances, and less useful in other circumstances,
depending on the information content of the data.

We propose a new way to consider high dimensional feature space structures – through joint char-
acterization. Rather than only using one or another type of dimensionality reduction, joint char-
acterization seeks to exploit synergies among multiple scales of variance and manifold structure
to capture multiscale information that is not well-represented by any single tool on its own. This
information can be manifest as structure in the space of bivariate (global vs local) distributions.

While the fundamental idea can be generalized, for the purposes of this study we illustrate the
approach using a progression of low to high dimensional image data. To do so, we begin by
choosing two commonly used dimensionality reduction tools: PCA as our global projection; and
t-distributed Stochastic Neighbor Embedding (t-SNE) as our local algorithm [6]. We explore a series
of increasingly complex examples to illustrate the strengths of this approach, starting with highly
simplified synthetic images and progressing to real-world airborne imaging spectrometer data.

Here, joint characterization is shown to consistently harness the strengths of both methods, us-
ing the interpretability of low-order PCs to orient the well-separated but disordered clusters that
are the hallmark of t-SNE. The utility of joint characterization becomes increasingly apparent as
data become more complex and multiscale structure becomes more important. In the imaging
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spectroscopy dataset, joint characterization is shown to be capable of identifying subtle differences
in reflectance spectra of green vegetation at biophysically meaningful wavelengths. The structure
captured by joint characterization is not readily apparent in either the PC or t-SNE spaces alone,
indicating clear potential utility of the approach for imaging spectroscopy applications that seek to
make full use of hyperspectral information content. Further, we extend these results using another
manifold learning algorithm, Laplacian Eigenmaps (LE) [7]. Contrasting the results of PC+t-SNE
and PC+LE joint characterizations illustrates the point that additional approaches to dimensional-
ity reduction may yield complementary insight by simplifying endmember identification mixing
relations, clarifying topological structure, and potentially identifying new endmembers not evident
from other approaches alone.

2. METHODOLOGICAL SUMMARY

The joint characterization methodology is briefly outlined in the following steps:

1. Compute one set of feature space basis vectors using a global variance metric

a. Evaluate hyperparameter sensitivity, if necessary

2. Compute another set of feature space basis vectors using a local variance metric

a. Evaluate hyperparameter sensitivity, if necessary

3. Evaluate topology of global and local feature spaces separately

4. Characterize joint feature space formed by combination of both global and local basis vectors

3. ANALYSIS

3.1 A Simple Synthetic Image

Simplified examples can help illustrate the approach. We begin with a synthetic image comprised
only of shades of gray (FIGURE 1). This 100 x 100 pixel 8-bit image is divided into a 10 x 10 grid
of monoshade chips, varying linearly from black (data values [0, 0, 0]) to white (data values [255,
255, 255]). Every pixel within each chip possesses identical data values. Because each pixel’s data
values are identical across the three channels, each 3-D [r,g,b] vector can be represented by a single
scalar value with no loss of information.

The geometric implication of all 3 channels of the image possessing equal values for all pixels is
that the data lie on a 1-D line within a redundant 3-D feature space. Standard PCA reflects this
geometric arrangement by partitioning 100% of the total variance (within numerical noise) into the
first PC. As a result, only one dimension of PCA is needed to exactly replicate the original image
data.

The t-SNE output in this simplified example (bottom center) illustrates several aspects of themethod.
First, the algorithm separates the data into approximately equally spaced clusters. Each cluster of
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points in the t-SNE scatterplot corresponds to a homogenous diagonal of the matrix of color chips
– i.e., all points in the image with a single [r,g,b] value.

This leads to the second important point illustrated in FIGURE 1 - that the relative positions of
the clusters in t-SNE space are arbitrary. This property is a significant departure from PCA, where
position along each axis corresponds to relative contribution of a specific eigenvector. Not so for
t-SNE.

Figure 1: A synthetic grayscale image illustrates how PCA can orient t-SNE clusters. In the case
of a grayscale image (top left), continuous variation of one principal component (top
center) captures all the information in the data. 2D t-SNE (top right) correctly assigns
each equal-brightness matrix diagonal to a small range of t-SNE values. The t-SNE space
(bottom center) has well-separated clusters corresponding to discrete brightness values,
but conveys no information about the global spatial structure (brightness gradient) of
the matrix. The joint PC + t-SNE space (lower left and lower right) retains the local
cluster structure, but orients the global relationships among clusters to align them along
the diagonal brightness gradient.

The third and fourth salient properties are less obvious at first glance: clusters of identical values
have nonzero dispersion in t-SNE space, and different t-SNE runs with identical hyperparameters
give slightly different results. These are also in contrast to PCA, where data values correspond to
one and only one set of PC values.

We show results using the scikit-learn default hyperparameter settings here (most importantly,
perplexity = 30), but note that the experimentation suggests the general structure of the output is
robust to a wide range of hyperparameter choices.
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Examining the PC + t-SNE outputs together – joint characterization – retains important information
from each. PCA effectively orients the data along its global variance structure – in this case, from
lowest to highest brightness values. T-SNE effectively partitions similar (in this case, identical)
values into well-separated clusters, but does not structure these clusters in a meaningful way. By
combining the global and local information captured by PCA and t-SNE, both sets of information
are retained and we are able to illustrate patterns which would be hidden by one or the other tool
on its own. In the 1-D case of FIGURE 1 there is no local structure, and the 1𝑠𝑡 PC captures all the
global structure, so joint characterization provides no new information. This is not the case for the
datasets with greater dimensionality examined below.

3.2 A More Complex Synthetic Image: Discrete 3D

Further insight can be obtained by examining a slightlymore complex synthetic dataset (FIGURE 2).
Here, three additional submatrices are introduced which illustrate binary mixing for each of the (red,
green); (red, blue); and (green, blue) combinations of primary additive colors.

Figure 2: Synthetic binary color mixtures illustrate local and global information. A synthetic
image (A; left) comprised of submatrices with both binary color mixtures and grayscale
brightness variability is analyzed with both PCA (A; center) and t-SNE (A; right). Three
PCs are now required to describe the RGB data. In PC space (B), the binary color mixtures
form a hexagonal manifold (PC 2 vs 3) arranged by hue and a perpendicular gray axis
to represent brightness. In t-SNE space (B; lower right), each equal-valued diagonal
of the grayscale submatrix forms a large cluster in the center while each distinct color
of the binary mixing submatrices forms a denser cluster in the surrounding cloud. The
joint PC+t-SNE space (C) aligns the randomly oriented t-SNE clusters along directions of
global variance (brightness), with the PC 1 projection clearly separating the grayscale and
color submatrices, and PC 2 and 3 projections orienting clusters in the color submatrix
on the basis of hue.
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PCA in this case yields markedly more structure to the data. PC 1 corresponds to overall pixel
brightness and PCs 2 and 3 form a discrete, hexagonal approximation of the color wheel, where each
of the 6 vertices corresponds to either a (red, green, blue) primary color or a (yellow, cyan, magenta)
binary mixture. The gray axis protruding from the center of the color wheel (white (W)) towards
high PC 1 values (black (K)) corresponds to the grayscale submatrix we have seen in FIGURE 1,
which again can be completely represented by a single dimension.

The t-SNE result for this more complex synthetic image bears notable similarities to the t-SNE result
for the grayscale-only image. Again, each set of pixels with identical values forms a cluster. The
increased number of unique [R,G,B] values is reflected in the increased number of clusters in t-SNE
space. Again, the clusters form an approximately equidistant lattice-like structure; again, the relative
position of clusters within this structure is arbitrary; again, pixels with exactly identical [R,G,B]
values (gray) form clusters with nonzero variance. The grayscale submatrix occupies the central
portion of the t-SNE plot and differs from the binary mixing submatrices because it has a greater
number of pixels with identical data values (entire submatrix diagonals, rather than individual matrix
elements).

As the complexity and dimensionality increase from FIGURE 1 to FIGURE 2, the value added by
joint characterization becomes apparent. The global variance structure captured by PCA serves to
orient the local structure captured by t-SNE. However, in this image, the homogeneity of each color
chip in this image limits the usefulness of local structural metrics like t-SNE. As we shall see below,
local information can be much more important as image complexity increases further.

3.3 Greater Complexity: Continuous 3D with Compression Artifacts

While simple datasets comprised of clusters with precisely equal data values can provide valuable
insight, most real-world images contain continuously varying data values. FIGURE 3 illustrates
PCA, t-SNE, and the joint characterization approach for a third example image with both discrete
and continuous variability. Importantly, the image has also undergone lossy compression using the
commonly used JPEG algorithm. Lossy compression is typically avoided for datasets with scientific
applications because it changes underlying data values. However, it does so in a way designed to
be difficult for the human eye-brain system to perceive. For this reason, ability to detect these
compression artifacts can be an indicator of the power of an analysis approach to extract subtle,
low-variance information which might be difficult for humans to visualize in the raw data.

Again, as image complexity increases further, the relevance of the joint characterization approach
becomes clearer. PCA again reflects the global variance structure of the data – in this case, a 3-D
color cube. Locally, t-SNE again partitions the sets of identical or nearly identical values of the color
chips in the bottom half of the image to tight clusters in the periphery of the plot. The continuum in
the top half of the data image is expressed as a more tortuous central point cloud. T-SNE appears
to be sufficiently sensitive to coherent small amplitude variability to capture JPEG compression
artifacts which are not obvious to the naked eye. Together, the joint space retains benefits of both
PC and t-SNE: global ordering and local cluster separability, respectively.
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Figure 3: Joint characterization reveals continuous and discrete structure in a more complex 3D
example. Both continuous and discrete variability is present in these discrete and
continuous [R,G,B] color tables (A; left). PCA (A; center) retains the global color
gradients while t-SNE (A; right) separates colors discontinuously on the basis of local
structure. In PC space (B) distinct [R,G,B] values fill out a color cube with a gray
axis spanning the diagonal between black and white. The t-SNE space (B) finds subtle
nonlinear manifolds that appear to correspond to compression artifacts in the continuous
hue scale, surrounded by tight clusters that correspond to specific [R,G,B] triplets on
the discrete array. The joint PC+t-SNE characterization (C) introduces complexity by
disrupting the interpretable geometric structure of the PC color space with the apparently
random structure of the t-SNE space.

3.4 Greater Dimensionality and Complexity: Airborne Imaging Spectroscopy

One promising application for joint characterization is in the examination of Earth-observing images
from sensors on aerial and satellite platforms. Imaging spectroscopy is a particularly interesting
use case because it allows us to explore images with much greater dimensionality than the images
recorded by typical cameras. Whereas a digital camera images the visible spectrum using 3 color
channels (red, green and blue primary colors), imaging spectrometers image a much wider range of
visible to Shortwave Infrared (SWIR) wavelengths with hundreds of narrowband spectral channels.
The result is a hyperspectral image cube where each geographic pixel provides a very detailed
optical reflectance spectrum capable of resolving subtle molecular absorptions characteristic of
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different chemical compositions of the material being imaged. The broad scale global structure
of each spectrum is characteristic of the material type (e.g. soil, vegetation, rock, water, snow)
while the finer scale absorption features allow differentiation within each material type (e.g. soil
composition, vegetation type and condition, rock mineral content). The resulting spectral feature
space generally has >100 dimensions corresponding to each of the narrow spectral channels in the
image cube. PCA is commonly used to characterize the lower-D global structure of the hyperspectral
feature space with respect to different types of materials, but fine scale absorption features exist
which contribute much less variance than the overall spectral shape and so tend to form amorphous
continua embedded within the low-D subspace of the low order PCs. The situation is analogous to
the continuous color scale in FIGURE 3 in which the primary colors control the overall cubic form
of the 3D PC space, while the continuum of additive colors form continua on the manifold between
the primary color apexes. The main difference is the vastly greater information content of imaging
spectroscopy, resulting from narrower spectral channels (e.g. ∼40 channels in the visible spectrum
alone) and much broader spectral range (e.g. 400 nm (visible blue) to 700 nm (visible red) to 900
nm (Near Infrared) to 2500 nm (Shortwave Infrared)).

In the context of this expository analysis, industrial-scale agriculture is a particularly well-posed
problem because of the easily comprehensible geographic patterns that occur at spatial scales coarser
than pixel resolution. Whereas individual fields are generally planted with a single crop type
having a similar overall spectral shape, spatial variations in soil moisture and nutrients within
individual fields can result in subtle differences in the reflectance of the aggregate spectra cor-
responding to the area imaged by each pixel. The ability to image these subtle spectral features
is part of the basis for the great potential of imaging spectroscopy to precision agriculture and
crop monitoring. To date, over 23 TB of such imagery has been collected by NASA’s Airborne
Visible / Infrared Imaging Spectrometer (AVIRIS) and are publicly available free-of-charge at:
https://aviris.jpl.nasa.gov/dataportal/.

We use an example AVIRIS hyperspectral cube of agriculture in the California’s Central Valley,
home to extensive industrial agriculture with total cash receipts exceeding $50 billion/year (CDFA,
2019). The area shown in FIGURE 4 is a 500 x 500 pixel (10 x 10 km) subset of flightline
f140606t02p00r04. Each pixel represents a spatially integrated optical reflectance spectrum at
roughly 16.5 m spatial resolution and 10 nm spectral resolution over the range 365 to 2496 nm.
Bands 1-14, 49-64, 75-84, 90-120, 150-180, and 210-224 were excluded due to atmospheric ab-
sorptions and/or sensor noise. 107 bands were retained for analysis.

The AVIRIS dataset clearly contains real-world complexity. However, the same properties which
characterize the synthetic datasets are also evident even here. The 3 low-order PCs effectively
capture global variance structure, capturing >97% of variance in this dataset and clearly grading
between distinct materials like soils, senescent vegetation, green vegetation, and standing water.
This single subset has similar global variance features to those found in previous, more extensive
observations of agricultural landscapes across the region in [8].

Even in the face of real-world complexity, t-SNE can be remarkably effective at capturing local man-
ifold structures in imaging spectroscopy data. Clusters in t-SNE space unambiguously correspond to
spatially coherent patterns of intra- and inter-field variability. However, as in the synthetic images,
the t-SNE space is clustered but unstructured. Adjacent clusters generally have no clear relation to
each other, and clusters in disparate corners of the t-SNE space can possess great similarity. This
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Figure 4: Joint characterization reveals novel structure in imaging spectroscopy data. The data
here (A; left) show an agricultural landscape in California’s Central Valley as imaged
by the 224-channel AVIRIS hyperspectral sensor.PCA (A; center) represents the global
variance continuum, and t-SNE (A; right) captures local manifold structure embedded
within the global feature space. The structure of the data in PC space (B) distinguishes
differences in vegetation, soil and water reflectance while the structure in t-SNE space
(B; lower right) clusters the data but does not orient according to any global structure.
Joint characterization (C) contains both the global variance structure represented by PCA
and the local structure found by t-SNE, effectively segregating the continuous PC space
into many distinct clusters and gradients.

property is inherent to t-SNE and limits its utility for imaging spectroscopy data – unless additional
information is introduced.

Joint characterization provides this additional information. In the case of these data, the joint space
clearly both retains useful clustering from t-SNE, and also orients those clusters using the global
variance structure captured by PCA. As a result, subtle but consistent interpretable differences can
be isolated within the imaging spectroscopy data which could not readily be identified from global
or local characterization alone.
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Figure 5: Multiscale spectral feature space of an AVIRIS hyperspectral image cube of agricultural
plots in the Great Central Valley of California. The spectral feature space of PCs 1 and 2
(lower left) shows global structure related to characteristic reflectance spectra of distinct
land cover types. The complementary feature space of PC1 and t-SNE1 (upper left) shows
finer scale clustering related to local structure corresponding to subtle differences among
similar land cover spectra. Distinct clusters (colored) of spectra generally correspond
to spatially contiguous patches within individual plots (upper right) while the mean
spectra of each cluster (lower right) all correspond to green vegetation, but with varying
differences in amplitude and curvature related to varying depth of H2O absorption bands
resulting from varying leaf water content of different crops. Pairwise differences of
cluster mean reflectances (inset) illustrate wide range of varying spectral slopes indicative
of differing H2O absorption strength, despite similar shapes of vegetation spectra that
result in cluster overlap in PC1/PC2 feature space.

FIGURE 5 shows an example using 10 regions of interest (ROIs) from the PC+t-SNE space. These
ROIs are chosen to illustrate the observed local variability in reflectance of green vegetation spectra.
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All green vegetation spectra in the image cluster in one corner of the PC space (lower left scatterplot),
and form distinct clusters throughout the t-SNE space (inset lower left), but form clearly separated
clusters across the range of t-SNE values in the joint characterization space (upper left scatterplot).
Mean reflectance spectra of each ROI are plotted in the lower right. All have a similar overall
shape (associated with their proximity in PC space) with characteristic absorptions typical of green
vegetation, but differ interpretably at wavelengths corresponding to known biophysical absorption
features like leaf water, cellulose/lignin, and photosynthetic pigments. Differences among ROIs
are easier to visualize when accentuated by differencing pairs of mean spectra (inset right). The
differences among the mean spectra are also indicated by the varying amplitude sequences in each
wavelength interval (inset labels). The variations in SWIR (1500 nm to 2500 nm) amplitude are
primarily a result of differences in depth of the liquid water absorptions in the H2O gaps driven by
differences in leaf water. It is notable that the spectral subsets of every pair of ROIs has Transformed
Divergence of 2.0, indicating complete spectral separability in the original 224-dimensional feature
space of the hyperspectral cube. When the pixels in each contiguous ROI from the PC+t-SNE space
are plotted in their corresponding locations in geographic space (upper right image) it is immediately
apparent that each ROI cluster from PC+t-SNE space corresponds to a distinct, spatially contiguous
region within individual or adjacent fields in geographic space. This spatial contiguity is consistent
with the local structure revealed by the PC+t-SNE space being related to crop-specific features in
the reflectance spectra. These subtle intra-field variations in reflectance can also be seen on the
sides of the hyperspectral cube in FIGURE 5.

As noted throughout, t-SNE is but one of a plethora of possible algorithms to capture local variance.
In order to demonstrate the potential for other algorithms to contribute additional information under
the joint characterization framework, we also illustrate the results of a second manifold-learning
algorithm, Laplacian Eigenmaps (LE) [7]. Briefly, LE (a special case of the more general term
‘Spectral Embedding’) forms a data affinity matrix and computes the spectral decomposition of this
matrix. Here, we use the ‘nearest neighbor’ affinity metric and default number of n_neighbors (i.e.,
max(N/10,1)). We also note that LE is more computationally intensive than t-SNE, requiring spatial
subsampling (see Appendix for additional computational details).

The resulting LE feature space for the AVIRIS data is shown in FIGURE 6. It is evident that LE
and t-SNE provide complementary information about both global and local manifold structure.
For these data, the LE-generated feature space topology clearly captures apexes linked by both
rectilinear and curvilinear edges. LE clearly identifies the endmembers identified from FIGURE 5,
providing simpler, more readily interpretable topology and endmember identification. Specifically,
senescent vegetation (yellow) and wet (cyan) endmembers form clear binary mixing relations with
partial vegetation (magenta), which mixes with bare dry soil (red) to converge on closed canopy
vegetation (green). Additionally, the joint PC+LE feature space combines the connectivity struc-
ture information provided by LE with the physical interpretability of the PC basis vectors, clearly
capturing coherent, interpretable landscape patterns. While FIGURES 1-5 illustrate that t-SNE can
add useful clustering information in the context of joint characterization, FIGURE 6 clearly shows
that other approaches to capturing local variance are also worth exploring. Ultimately, the optimal
approaches for capturing global and local variance are likely to be data dependent, and the wise
and careful analyst may find it useful to explore multiple avenues of inquiry before determining an
optimal characterization for any particular case.
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Figure 6: Using an additional local variance metric can provide additional insight into feature
space topology. In this case, implementation of the Laplacian Eigenmaps (LE) algorithm
generates a feature space with clearer apexes than PCs and less clustering than t-SNE.

4. DISCUSSION

From FIGURES 4, 5, and 6, it is apparent that joint characterization can be useful for analysis
of imaging spectroscopy datasets, at least of agricultural landscapes. While some of the features
of imaging spectroscopy data may render it particularly amenable to this type of analysis, the ap-
proach is highly general and might easily be extended to other high dimensional datasets. Potential
implications and avenues for future work are discussed below.

4.1 Importance of Both Local Manifolds & Global Variance

The foundation of this study is the recognition that the information content of high dimensional
datasets can map onto multiple scales of variance. In essence, some data are too rich to be well-
described by variation measured at a single scale. In the case of imaging spectroscopy, global
and local scales are frequently recognized as the “spectral continuum” and “absorption features”
(respectively), and so have established physical attributes [9]. The global variance structure of
Earth surface reflectance also has a well-understood physical meaning in terms of a mixing space of
spectrally distinct endmember materials [8,10-14]. This may not generally be the case for all types
of data.
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One common approach to determining the feature space basis vectors for imaging spectroscopy data
is to use low-order dimensions from PCA. However, this approach implicitly assumes that global
variance corresponds to information – that is, high variance features (e.g., differences in the spectral
continuum) are prioritized over low variance features (e.g., absorptions). Such an approach may not
be optimal in all cases, as one of the great strengths of imaging spectroscopy is its ability to accu-
rately capture narrow, low-amplitude features. In this context, joint characterization can be used to
generate an alternate set of spectral feature space basis vectors. Specifically, the spectral continuum
might be effectively captured using a global algorithm like PCA, while low amplitude differences in
absorptions using an algorithmmore tailored to capturing local-scale manifold structure, like t-SNE.
It is possible that using both characterization approaches together might yield a joint spectral feature
space which could more effectively capture important differences in both spectral continuum and
absorptions. Thismight prove particularly valuable for exploiting low-amplitude variance structures
in the context of the spectral mixture residual approach proposed by Sousa et al., 2021 [15,16].

4.2 Implications for the Remote Sensing Community

Imaging spectroscopy is an emerging subdiscipline in remote sensing. After decades of instrument
development, and early successes like Hyperion and HICO [17,18], a new generation of satel-
lite missions are at or nearing operational status. While multispectral satellite imagery has been
collected for over 40 years, image analysis methods must continue to evolve to match the higher
dimensional demands of hyperspectral data. Tools like joint characterization will be necessary for
the scientific community to fully exploit the information captured by these data. Indeed, a theoretical
basis exists for joint characterization to prove particularly useful for geospatial datasets. In such
data, spatial autocorrelation can translate into physically meaningful variance at local scales, and
the finite range of reflectance of Earth surface properties can translate into consistent, physically
interpretable patterns of global variance.

Specifically, the results of this analysis suggest that, in some circumstances, joint characterization
may be an effective tool for the imaging spectroscopy community by providing useful basis vectors
for spectral feature spaces. For many study areas, the global variance patterns captured by PCA can
be easily interpretable in the context of common, well understood classes of Earth materials [8].
Linking these interpretable global features to the local, low-variance manifolds captured by t-SNE,
LE or other similar algorithms may considerably enhance the value of imaging spectroscopy by
allowing for effective visual discrimination of subtle biophysical differences among spectra with
similar global variance profiles (e.g., the green vegetation endmembers shown in FIGURE 5).

An additional promising area of inquiry is in the realm of spatiotemporal analysis. Temporal feature
spaces are inherently higher dimensional than spectral feature spaces because they are a result of
temporal progressions of physical states less constrained by the finite number of material properties
and molecular structures that give rise to feature spaces of reflectance spectra [19]. It is likely
that image time series may also be characterized by signals existing at multiple scales, especially
given the wide range of ways that Earth surface reflectance can evolve through time (vegetation
phenology, fire, flooding, land cover change, etc.). This idea has recently begun to be explored
[2021], but significant avenues for future work remain.
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4.3 Open Questions for Future Work

Several avenues for future work exist. First, we use PCA, t-SNE, and LE in this analysis as tools for
measuring global and local variance, but others exist. Which, if any are most effective? Using what
criteria, and under what circumstances? Second, t-SNE and LE (as well as several other manifold
learning approaches) can yield variable results. How sensitive is the result to hyperparameter
choice? How well do clusters observed by joint characterization align with physical properties of
the data? In what, if any, cases are clusters spurious, or have no clear physical meaning? Questions
like these, and many others, will be critical to examine in detail as joint characterization is applied
to a greater diversity of data.

5. CONCLUSIONS

We introduce the idea of joint multiscale characterization. The underlying principle is that infor-
mation in high dimensional data can exist at multiple scales of variance. Joint characterization
uses global and local variance metrics together to identify data patterns which are not evident from
either metric alone. We illustrate this principle using Principal Components Analysis as a global
variance metric, and t-distributed Stochastic Neighbor Embedding and Laplacian Eigenmaps as
local variance metrics. Examples begin with low dimensional synthetic image data and progress in
complexity and dimensionality to airborne imaging spectroscopy data of an agricultural landscape.
The utility of joint characterization increases as data complexity increases, culminating in clear
separability of green vegetation spectra which differ at wavelengths corresponding to key biophys-
ical traits. Joint characterization may prove particularly useful for geospatial datasets given both
robust local structure (due to spatial autocorrelation) and physical meaning of global variance (due
to spectral mixing), but the idea could be generalized to other data types as well.
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7. SUPPLEMENTARY INFORMATION

7.1 t-SNE Hyperparameter Sensitivity

FIGURE S1 illustrates the effect of varying perplexity on the trial dataset from FIGURE 2. Here,
perplexity is varied across the range of suggested values (from 5 to 50, in increments of 5). The
overall effect of changing perplexity in this dataset is on the dispersion of the central grayscale
clusters. In general, t-SNE clusters comprised of equal-valued grayscale pixels are most compact
and most separated from each other at low perplexity values. As perplexity increases, the dispersion
of the clusters increases and they grow towards each other, ultimately filling themajority of the space
of the central portion of the plot. Interestingly, this occurs only for the clusters corresponding to
grayscale pixels, and not clusters corresponding to binary color mixtures.
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Figure S1: The t-SNE hyperparameter of perplexity impacts cluster dispersion. As the t-SNE
hyperparameter of perplexity increases across its recommended range of values, the
central clusters corresponding to equal-valued grayscale matrix diagonals expand to fill
the center of the plot. The outer clusters corresponding to binary color mixtures also
expand but show considerably less sensitivity.

Other key hyperparameters (early exaggeration, learning rate, number of iterations) were varied
across their suggested ranges as well, but none demonstrated any appreciable sensitivity comparable
to that of perplexity. In particular, recent literature[20,21], suggests the potential for particular
sensitivity to learning rate and recommends determining this hyperparameter using the following
formula:

max(N / early_exaggeration / 4, 50)

Figure S2: The t-SNE hyperparameter of learning rate has a minor impact on cluster dispersion
in this trial dataset. As the t-SNE hyperparameter of learning rate increases between
the minimum recommended value of 50 [20,21], the scikit-learn default of 200, and the
data-adaptive recommended value of 833, central clusters corresponding to equal-valued
grayscale matrix diagonals contract slightly to leave more empty space near the center
of the plot. The outer clusters corresponding to binary color mixtures show considerably
less sensitivity.

217



https://www.oajaiml.com/ | August-2021 DANIEL SOUSA AND CHRISTOPHER SMALL

For the trial dataset from FIGURE 2, with N = 30,000 pixels and using the default scikit-learn
early_exaggeration value of 12, this formula yields a learning rate value of:

max(40,000 / 12 / 4, 50) = max(833, 50) = 833

We illustrate the effect of learning rate at this hyperparameter choice, in comparison to the scikit-
learn default value of 200 as well as additional values between the lower bound of 50 and upper
bound of 833, in FIGURE S2. We also note that recent work [22,23], suggests relative hyperparam-
eter insensitivity for some biogeophysical systems, such as landscape-scale Earth observation.

7.2 Computational Specifics

Computation of was performed using the Principal Component Rotation tool in ENVI 5.6, which
follows the approach of [24]. Details are given at: https://www.l3harrisgeospatial.com/docs/
principalcomponentanalysis.html. Covariance-based transforms were used in all cases. Results
were compared to the scikit-learn output (sklearn.decomposition.PCA) and no perceptible difference
was found.

Computation of t-SNE and LE was performed in Python 3.8.8 using scikit-learn v0.24.2. Com-
putation time was found to be sensitive to perplexity but less sensitive to learning rate. On a 2
GHz Quad-Core Intel Core i5 CPU with 32 GB of 3733 MHz LPDDR4X RAM and an Intel Iris
Plus Graphics 1536 MB GPU, computation time for a single t-SNE realization for FIGURE 2 with
perplexity = 100 was just under 3 minutes (199 seconds for learning rate = 200; 215 seconds for
learning rate = 833). Computation time decreased when the perplexity hyperparameter was lowered
to its default of 30 using either the higher or lower learning rate (138 seconds at learning rate = 833;
127 seconds at learning rate = 200).

Computation of LE was found to require substantially more RAM than t-SNE. Specifically, the
number of samples (i.e., pixels) was found to be a significant limiting factor in computation and
inversion of the LE connectivitymatrix. Computation using the full 500×500 pixel AVIRIS example
dataset was not possible using this hardware, so data were spatially subsampled (decimated) by a
factor of 5 in each dimension to yield a 100 × 100 pixel subset. However, once the dataset was
reduced within RAM limitations, computation time was faster than t-SNE (50 seconds).
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