
Advances in Artificial Intelligence and Machine Learning; Research 3 (1) 778-815 Received 23-01-2023; Accepted 25-02-2023; Published 04-03-2023

Goal Agnostic Learning and Planning without Reward Functions

Christopher Robinson ckevinr@gmail.com
Louisville, KY
USA

Joshua Lancaster
Louisville, KY
USA

Corresponding Author: Christopher Robinson

Copyright © 2023 Christopher Robinson. This is an open access article distributed under the Creative Commons Attri-
bution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

Abstract
In this paper we present an algorithm, the Goal Agnostic Planner (GAP), which combines
elements of Reinforcement Learning (RL) and Markov Decision Processes (MDPs) into an
elegant, effective system for learning to solve sequential problems. The GAP algorithm does
not require the design of either an explicit world model or a reward function to drive policy
determination, and is capable of operating on both MDP and RL domain problems. The
construction of the GAP lends itself to several analytic guarantees such as policy optimality,
exponential goal achievement rates, reciprocal learning rates, measurable robustness to error,
and explicit convergence conditions for abstracted states. Empirical results confirm these
predictions, demonstrate effectiveness over a wide range of domains, and show that the GAP
algorithm performance is an order of magnitude faster than standard reinforcement learning
and produces plans of equal quality to MDPs, without requiring design of reward functions.

Keywords: Graphical models, Markov model, Probabilistic methods, Hypergraphs, Se-
quential planning

1. INTRODUCTION

This paper presents an algorithm created specifically to solving arbitrary planning problems without
requiring a reward function or pre-defined transition model. The impetus for such agents is based on
two principles: (1) the idea that crafting reward functions introduces a risk of bias; and (2) objective
based learning models reduce the potential for knowledge re-use.

Many extant methods have seen broad use and are highly effective at solving a range of sequential
problems in an equally wide range of domains. However, one key indicator of a common problem is
the very existence of this diversity. For every parent methodology, there are dozens, if not hundreds
of application–specific variants, designed to solve specific domains and addressing problems which
emerge when those domains magnify limitations of the general framework. Given that the most
frequently used problem solving and learning systems all have many adaptations to cover this wide

778
Citation: Christopher Robinson and Joshua Lancaster. Goal Agnostic Learning and Planning without Reward Functions. Advances in
Artificial Intelligence and Machine Learning 2023;3(1):50.

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

range of circumstances, we can see that similar problems of adaptation apply- systems which find
wide adoption are highly flexible and thus are able to fill a wide range of roles.

In general, when convergence to a goal policy is desired, there is a necessary component of design
to align progressive algorithms towards solution convergence. In planning, this requirement can
generally be summed up as either the design of a reward function (as with reinforcement learning
or MDPs), or a detailed model, as with automated planning and classical artificial intelligence
algorithms. It is possible to view these two systematic functions as serving the same role- to provide
a model which represents the problem in soluble form- maximizing reward or satisfying modeled
transition conditions.

From these observations, we can hypothesize that a problem solving system which includes both
planning and learning components, integrates features from highly effective extant agent designs,
and eschews both world modeling and reward functions would fit the bill for an efficient, effective
system. One of the key components, then, will be the elimination of the common design based
limiting factors, while integrating components in a way which does not re-introduce problems
ameliorated by other factors. In doing so, we can address some ubiquitous outstanding issues
through a holistic approach to the design of the agent, rather than adjustment of the agent to fit
a problem domain.

The Goal Agnostic Planning (GAP) algorithm applies these principles by combining an MDP-like
planner with an RL-based learningmechanism, integrated with a composite datastructure combining
a hypergraph, pointer arrays, and linked lists. This datastructure is populated and updated through-
out learning so that Dijkstra’s algorithm may be used to find an optimal maximum probability
path between an observed current state and any reachable goal state which exists. GAP agents
therefore require no modification to re-use already learned domain knowledge when presented with
an alternate goal state. They do not require manual construction of a transition graph or reward
function.

In addition to achieving the objective of producing learning agents with the previously described
properties, we are also able to analytically prove several valuable features of the algorithm, including
exponentially bounded rates of goal convergence; learning rates proportional to the reciprocal of
epoch number; polynomial computational complexity in both space and time; and explicit condi-
tions and performance impacts for agents learning under state abstractions or uncertainty.

To demonstrate the effectiveness of GAP agents in practice, we explore 3 example domains to
demonstrating the accuracy of the analytic predictions. On these problem domains, we evaluate the
performance of the GAP agent against performance baseline set by an MDP planner, and a learning
baseline set by Q-Learning.

1.1 Related Work

In this section, we will be discussing well-established methods for solving sequential problems,
in particular to discuss the concepts we appropriate for our work, and present the context for the
limitations of prior systems we seek to ameliorate with the GAP.

779

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

Our objective here is to demonstrate, through prior literature, that methods in Reinforcement Learn-
ing (RL), Markov Decision Processes (MDPs), and automated planning share common design–
related threads that limit effectiveness, which are intimately related to world design and reward
function selection. While there are immediately apparent constraints associated with designer bias
and breadth of representation implicit in either building a world model or constructing a reward
function, we also intend to illustrate deeper connections which cannot be directly addressed by
minimizing these topical design problems on a case–by–case basis.

We seek to illustrate three primary limitations in extant approaches with this review:

1. That the need for an explicitly designed reward function or world model is intricately tied to
the effectiveness of these algorithms;

2. That construction of such guiding functions recasts a problem into a form which is oriented
towards narrow goal sets, losing information; and

3. That the many variants of these systems indicate these limitations, via necessitating bespoke
adaptations to ameliorate them.
In highlighting these issues, we are developing the rationale for development of a system
which diverges from the prior designs.

Planning for sequential problems is a very well-studied topic, and naturally invites the question as to
why another approach is necessary. In this section, we discuss well-established methods for solving
sequential problems, and highlight limits and restrictions of these methods addressed by the GAP
algorithm. Our objective is to demonstrate that extant methods have design–related limitations that
are intimately related to world design and reward function selection.

RL agents operate in a state/action framework, learning a quality function for maximizing prospec-
tive rewards. A common through–line for reinforcement–based systems is the necessity of reward
function design for convergence. Performance of an RL agent is predicated on the quality of this
function, a relationship explored in detail by [1]. An additional limitation expressed both in [2],
and [3], is goal orientation. Reward functions are constructed in relation to a specific objective, so
training applies only to that goal. We remove both these limits entirely by separating learning from
both rewards and specific goals.

While considered more flexible than most machine learning systems, MDPs are reliant on care-
ful modeling of the system in question. [4], discusses the construction of action sets for MDP
formulation as a design methodology, illustrating the presence of implicit optimality conditions.
[5], investigates the use of reinforcement learning to supplant reward functions, showing that re-
ward design effects the success of the planner. [6], discusses problems associated with identifying
probabilities for goal achievement and reaching dead ends in the MaxProb problem. We are able to
explicitly derive these probabilities for the GAP agent. A special case ofMarkovDecision Processes
is the Stochastic Shortest Path (SSP) problem, most notably investigated in [7]. SSP problems seek
to identify an optimal policy for stochastically varying costs, similar to MaxProb. [8], discusses

780

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

outstanding issues with policy definition related to the implementation of SSP policy determination.
We find a polynomial-time, globally optimal solution in this special case of the SSP.

Efforts towards integrating learning and planning domains to improve performance have seen suc-
cess as well. [9], presents Graphplan, which operates on a task graph, extended to probabilistic
planning in [10]. However, they acknowledge limitations of overlapping action results– an issue
the GAP algorithm resolves. [11], presents a probability-based belief model in their Abstraction
Augmentation- a notion we extend and adapt to state abstraction as a transform. [12], combines re-
inforcement learning with search-based planning, implementing their DARLING algorithm. How-
ever, they still implement reward-based training and focus on semantic planning, losing the com-
putational benefits of graph-based systems. We advance these concepts by unifying their properties
and reducing detriments by eliminating design-dependence.

Use of model simplification and abstraction to reduce state space size and improve planning have
also been investigated. [13], evaluates state abstractions as applied to tree search, similar to our state-
mixing interpretation of abstractions but lacking the analytic power of our model. [14], evaluate
model reductions for automated planning. They note a goal-state mapping condition analogous to
our convergence condition for abstracted domains, and use connected component analysis to identify
the presence of dead ends- a method we simplify through our trap net analysis. In [15], the authors
develop a system to learn abstractions in a probabilistic planning domain. Their agents are designed
for symbolic planning rather than graphical planning, however, and are constructed in the standard
reward–based framework for MDPs, lacking the design–agnostic elements our design implements.

While success has been seen with these methods, we can see that there are still inherent limits
imposed by world construction and design of reward functions. We address these problems in
tandem by modeling the planning task as a lower order combinatorial problem operating on a 3–
dimensional datastructure, confining the space complexity to 𝑂 (𝑛3), and the time complexity to
𝑂 (𝑛2) using Dijkstra’s Algorithm. Our hypergraph data structure allows for planning of any task
within a domain and learns a representative model by observation without human design influence.
It combines aspects of prior work approaching these outstanding problems in a coherent single
system: removing the reward function and implementing non–search planning using the maximally
probable path as the action policy.

1.2 Contribution

We address these problems by modeling the planning task as a lower order combinatorial problem
operating on a 3–dimensional datastructure, confining the space complexity to 𝑂 (𝑛3), and the time
complexity to 𝑂 (𝑛2), rather than semantic logic. This addresses issue (1) by treating the learning
task as a probability optimizing planning path, and issue (2) by retaining all the functional operations
within polynomial time space. Our hypergraph data structure learns a representative model by
observation without human design influence. It combines aspects of prior work on these outstanding
problems: removing the reward function, implementing non–search planning, and losing no state-
to-state observation data.

We are able to derive several benefits: GAP agents are goal agnostic, require no design of either re-
ward functions or world models, operate in polynomial time, and are natively explainable. Solutions

781

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

Figure 1: Hypergraph representation in a 3D array, detailing the existence of multiple overlapping
edges between pairs of nodes for which differing actions may result in the same state–to–
state transition.

are globally optimal and exhibit exponentially bound goal achievement rates, stochastic behavior is
fully predictable, and we derive conditions for learning state–abstracted problems, present a metric
for performance variance under abstractions and uncertainty, and prove that GAP training converges
with reciprocal–form learning curves.

2. THE GAP ALGORITHM

In this section, we define terms related to the construction and analysis of the GAP algorithm, and
present a robust analytical evaluation of its properties.

2.1 Definitions

Herein, we define all the components and terms which will be used in the succeeding sections, in
particular those relating to the hypergraph modeling system, its associated auxiliary data structures,
and the mechanisms used for planning.

A GAP agent registers a set of perceptual states (denoted S) and may take a set of actions (A),
which can impact the world and possibly alter the state. At any given point in time 𝑘 , the agent
can observe an initial state, 𝑠𝑖 ∈ S, and subsequently take an action 𝑎𝑙 ∈ A, resulting in a state
change to a final state 𝑠 𝑓 (note that 𝑠 𝑓 may be identical to 𝑠𝑖). Such a series is henceforth referred
to as an occasion: 𝑜𝑘 = 𝑎𝑙 (𝑠𝑖) → 𝑠 𝑓 , conceptually treated differently than traditional state/action
or state/action/state sets.

We implement a learning system for which the basic units are occasions within a 3-dimensional
structure of size |S| × |S| × |A|, labeled INC. Cells at locations (𝑠𝑖 , 𝑠 𝑓 , 𝑎𝑙) (𝐼𝑁𝐶 [𝑖, 𝑗 , 𝑙]) contain
an instance count of the number of times the corresponding occasion has been observed. This data
structure is conceptualized as a directed hypergraph (FIGURE 1): a higher dimensional analog of a
graph with multiple edges between each node, corresponding to varying actions. Each action may
have multiple results that overlap with other actions’ results. Thus, we have multiple links between
states, each connected with a different action. This structural change allows us to contend with the
challenge of overlapping action results identified in [10].

782

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

Figure 2: Extraction of an Action/State result slice from the hypergraph, illustrating the relationship
between the a–priori state 𝑠𝑖 and the potential results of taking actions from within that
state.

We can calculate the probability of an occasion occurring as a ratio of the number of observed
instances of the occasion to the sum of occasion counts along a slice of INC. However, as 𝑠𝑖 is fixed
but 𝑎𝑙 and 𝑠 𝑓 are not, this presents two possibilities for probability models, one referenced against
resultant states and one referenced against actions taken.

In the first model, the a priori probability, the most probable outcome of taking an action from a
given state is referenced. Calculation of the associated probabilities is thus given by the following
formula:

𝑃(𝑎𝑙 (𝑠𝑖) → 𝑠 𝑗) := 𝑃(𝑠 𝑗 |𝑠𝑖 , 𝑎𝑙) =
𝐼𝑁𝐶 [𝑠𝑖 , 𝑠 𝑗 , 𝑎𝑙]∑
∀𝑠 𝐼𝑁𝐶 [𝑠𝑖 , 𝑠, 𝑎𝑙]

(1)

In the second model, a posteriori probability, we select actions based on the most probable cause
of a given state/state transition, calculated:

𝑃(𝑎𝑙 (𝑠𝑖) → 𝑠 𝑗) := 𝑃(𝑎𝑙 |𝑠𝑖 , 𝑠 𝑗) =
𝐼𝑁𝐶 [𝑠𝑖 , 𝑠 𝑗 , 𝑎𝑙]∑
∀𝑎 𝐼𝑁𝐶 [𝑠𝑖 , 𝑠 𝑗 , 𝑎]

(2)

To effect a net change among non-adjacent states, several actions must be taken. An ordered series
of these transitions and the associated states we term a sequence. Solutions produced by the planning
algorithm are sequences, represented as a pair of two ordered lists𝜎𝑜𝑔 = [{𝑠1, 𝑠2...𝑠𝑔}, {𝑎1, 𝑎2, ...𝑎𝑔−1}],
where 𝑎1(𝑠1) → 𝑠2, 𝑎2(𝑠2) → 𝑠3, and so on.

For each occasion we will have the conditional probability which represents the likelihood of the
occasion occurring. For a sequence, we can then define a joint probability of the entire sequence
being executed:

𝑃(𝜎) =
∏
∀𝑜𝑘∈𝜎

𝑃(𝑎𝑙 (𝑠𝑖) → 𝑠 𝑗) (3)

Which serves as our primary optimization criteria. With this, it is possible to define a class of
subgraphs embedded within the hypergraph which must contain all edges of a solution. One such
subgraph formulation which is computationally simple to construct and maintain contains all max-
imally probable transitions between any state pair (𝑠𝑖 , 𝑠 𝑗), stored as an |S| × |S| × 2 array. The
component < 𝑠𝑖 , 𝑠 𝑗 , 0 > is the maximum probability associated with the 𝑠𝑖 → 𝑠 𝑗 transition, and
component < 𝑠𝑖 , 𝑠 𝑗 , 1 > is the index of the corresponding action. Thus defined, we have:

𝐴𝐹𝐼 [𝑠𝑖 , 𝑠 𝑗 , 0] =
𝐼𝑁𝐶 [𝑖, 𝑗 , argmax

𝑙
{𝑃(𝑎𝑙 (𝑠𝑖) → 𝑠 𝑗)}]∑

∀𝑠 𝐼𝑁𝐶 [𝑠𝑖 , 𝑠, 𝑎𝑙]

783

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

Figure 3: Array/linked list showing the indexed cell locations within the array containing pointers
to the corresponding elements in the sorted linked list, which itself contains the data
component associated with each array cell, and is organized into columns containing the
same number of observed instances.

𝐴𝐹𝐼 [𝑠𝑖 , 𝑠 𝑗 , 1] = argmax
𝑙
{𝑃(𝑎𝑙 (𝑠𝑖) → 𝑠 𝑗)}

Another such graph, prepared andmaintained similarly, is one which contains maximally likely final
states with respect to actions taken. This graph can be represented on an |S| × |A| × 2 sized array,
in which members at < 𝑠𝑖 , 𝑎𝑙, 0 > represent the probability associated with the most likely result of
taking action 𝑎𝑙 from state 𝑠𝑖, and < 𝑠𝑖 , 𝑎𝑙, 1 > represents the index of 𝑠 𝑓 . Each of these compressed
arrays represents a traditional graph, which feature we will use for efficient computation of solution
sequences.

2.2 Datastructures & Algorithms

In this section, we begin by presenting the datastructures used to retain observed information, and
then the algorithms which operate on these datastructures to identify solutions within the problem
space.

We use a combination of an array with a linked list, as illustrated in FIGURE 3, such that each
element in the array is a pointer to a member of the linked list containing that address’ necessary
data. In such a structure, each array element contains a pointer to a member link within the linked
list and each such member, in addition to any other data, contains its corresponding location within
the array.

In his way, the linked list need not be searched for member elements, and ordering of the list can be
maintained using single operations on the linked list members. For our case, sorting is by incidence
counts, and so we also implement the linked list in a parallel configuration with each ’column’
containing instances with identical numbers of observed instances, so that each observation requires
at most two operations to retain the list in sorted order.

A hypergraph may be stored in a 3-dimensional array, but for planning we choose a probability
model as described above, where the planning algorithm need not evaluate all edges, only the most
probable ones. We thus augment the hypergraph with a pair of array/linked lists corresponding to
the sorted elements within the maximal likelihood subgraphs. The 3-dimensional array is paired
with two 2-dimensional array linked lists, corresponding to the a priori and a posteriori probability

784

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

Algorithm 1 Linked list subgraph maintenence
functionMaintainLL(𝐼𝑁𝐶, (𝑠𝑖 , 𝑠 𝑓 , 𝑎𝑙))

𝑜𝑐𝑐𝑎𝑠𝑖𝑜𝑛𝐿𝑖𝑛𝑘 = 𝐼𝑁𝐶 [𝑠𝑖 , 𝑠 𝑓 , 𝑎𝑙, 0]

if 𝑜𝑐𝑐𝑎𝑠𝑖𝑜𝑛𝐿𝑖𝑛𝑘.𝑝𝑟𝑒𝑣 == 𝑁𝑜𝑛𝑒 then
return 1
if 𝑜𝑐𝑐𝑎𝑠𝑖𝑜𝑛𝐿𝑖𝑛𝑘.𝑝𝑟𝑒𝑣.𝑐𝑜𝑢𝑛𝑡

> 𝑜𝑐𝑐𝑎𝑠𝑖𝑜𝑛𝐿𝑖𝑛𝑘.𝑐𝑜𝑢𝑛𝑡 then
return 1
if 𝑜𝑐𝑐𝑎𝑠𝑖𝑜𝑛𝐿𝑖𝑛𝑘.𝑝𝑟𝑒𝑣.𝑐𝑜𝑢𝑛𝑡

== 𝑜𝑐𝑐𝑎𝑠𝑖𝑜𝑛𝐿𝑖𝑛𝑘.𝑐𝑜𝑢𝑛𝑡 then
𝑜𝑐𝑐𝑎𝑠𝑖𝑜𝑛𝐿𝑖𝑛𝑘.𝑝𝑟𝑒𝑣 = 𝑜𝑐𝑐𝑎𝑠𝑖𝑜𝑛𝐿𝑖𝑛𝑘.𝑝𝑟𝑒𝑣.𝑝𝑟𝑒𝑣
𝑜𝑐𝑐𝑎𝑠𝑖𝑜𝑛𝐿𝑖𝑛𝑘.𝑝𝑜𝑠𝑡 = 𝑜𝑐𝑐𝑎𝑠𝑖𝑜𝑛𝐿𝑖𝑛𝑘.𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑜𝑐𝑐𝑎𝑠𝑖𝑜𝑛𝐿𝑖𝑛𝑘.𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =

𝑜𝑐𝑐𝑎𝑠𝑖𝑜𝑛𝐿𝑖𝑛𝑘.𝑝𝑟𝑒𝑣.𝑐𝑢𝑟𝑟𝑒𝑛𝑡

metrics, each member pointing to a linked list which contains the sorted members of the slice along
the compressed axis: the maximum likelihood subgraph.

FIGURE 4 shows how each cell in the 3-dimensional array contains two pointers, one to each
subgraph compression, and each subgraph cell contains the linked list of members along the com-
pression axis. For the a priori probability.

Because the linked list members each contain increment counts of the number of times the occasion
has been observed, and are sorted by these counts, each link may only move ahead one link in the
list at any time. As such, maintenance revolves around correctly rebuilding the link chain at each
step, as detailed in Algorithm 1. The maximum likelihood subgraph slice of the bulk hypergraph
data structure is thus perpetually embedded within the array/linked lists. Addressing to the linked

Figure 4: Augmented hypergraph data structure: a 3 dimensional array, each cell of which contains
pointers to members of two Array/Linked List objects, each containing a pointer to the
corresponding sorted list associated with that state/action or state/state pair, allowing for
immediate retrieval.

785

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

Algorithm 2 Sequence inference algorithm
function SequenceInfer(𝐴𝐹𝐼, (𝑠𝑖 , 𝑠𝑔))

𝑏𝑜𝑢𝑛𝑑 ← 𝑠𝑖 .𝑒𝑑𝑔𝑒𝑠
𝑝𝑒𝑟𝑚 ← [(𝑠𝑖 , 1.0)]
𝑒𝑑𝑔𝑒𝑠← []
while 𝑠𝑔 ∉ 𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 do
𝑗𝑜𝑖𝑛𝑡𝑃𝑟𝑜𝑏(𝑠 𝑗) B 𝑝𝑒𝑟𝑚 [𝑏𝑜𝑢𝑛𝑑 [𝑗]] [1] · 𝑏𝑜𝑢𝑛𝑑 [𝑗] .𝑃
𝑠𝑚𝑎𝑥𝑃 ← argmax

𝑠 𝑗
(𝑗𝑜𝑖𝑛𝑡𝑃𝑟𝑜𝑏)

𝑝𝑒𝑟𝑚 ← (𝑠𝑚𝑎𝑥𝑃 , 𝑗𝑜𝑖𝑛𝑡𝑃𝑟𝑜𝑏(𝑠𝑚𝑎𝑥𝑃))
𝑏𝑜𝑢𝑛𝑑 = (𝑏𝑜𝑢𝑛𝑑 ∪ 𝑠𝑚𝑎𝑥𝑃 .𝑒𝑑𝑔𝑒𝑠) − [𝑒 |𝑒(1) = 𝑠𝑚𝑎𝑥𝑃]
𝑒𝑑𝑔𝑒𝑠← 𝑏𝑜𝑢𝑛𝑑 [𝑠 𝑗]
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = [𝑒𝑑𝑔𝑒𝑠[𝑠𝑔]]
while 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛[−1] [0] ≠ 𝑠𝑖 do
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛← 𝑒𝑑𝑔𝑒𝑠[𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛[−1] [0]]
return 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

list element is direct via pointer, and comparison of the increment counts require only the prior and
current list members, and thus each update’s complexity is 𝑂 (1).

To identify the maximally probable path, we implement a modified version of Dijkstra’s algorithm
adapted to find maximum probability (rather than minimum weight) subtrees rooted at 𝑠𝑖 using
the Array Linked Lists of AFI. Algorithm 2, formalizes this, calculating the net probability as a
result of each sequential action, expressed in Equation 3. Due to the structure of the augmented
hypergraph, the computational efficiency of this method is𝑂 (|S|2) for the a priori probability model
and 𝑂 (|S| · |A|) for the a posteriori model.

Phrased by analogy to Markov Decision Processes, this algorithm produces a policy 𝜋(𝑠𝑖) such that
the action taken at any step is the first action in the maximal probability sequence between 𝑠𝑖 and
𝑠𝑔, or:

𝜋(𝑠𝑖) = ©«argmax
𝜎𝑖𝑔

∏
∀𝑜 𝑗 ∈𝜎𝑖𝑔

𝑃(𝑜 𝑗)ª®¬
������
𝑘=0

(4)

the first action in the most–probable sequence 𝜎𝑖𝑔 from state 𝑖 to state 𝑔 (even if the ideal state–
to–state transition was not achieved at the prior step). Note that, in this analogous formulation, no
reward term exists within the policy function.

We can see from this implementation that the decision–making process of GAP agents is imminently
transparent and explainable. For any plan, the actions are based on the probability-maximizing
policy and the corresponding state-to-state transitions intended by the sequence of actions is readily
available from the algorithm. Further, it is clear at this stage that a path between any pair of reachable
states can be achieved, making the learned 𝐴𝐹𝐼 arrays fully independent of goal choice.

786

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

2.3 Analysis of the GAP Algorithm

In this section, we analyze the performance of the GAP algorithm as defined above to show optimal-
ity and efficacy, determine agent dynamics, the effects of abstractions on performance, and learning
convergence properties. For our analysis, we rely heavily on Markov process analysis techniques,
with the critical difference that we have defined a generalized action policy, Equation 4, rather than
derive one from analysis of a problem space.

2.3.1 Optimality of GAP plans

We begin by demonstrating the optimality of Equation 4 as a policy. We first demonstrate that the
optimal path is embedded within the subgraph.

Theorem The solution with maximum joint probability within a hypergraph is embedded within
the maximum likelihood subgraph.

Proof We proceed by contradiction. Presume that there exists an optimal solution sequence 𝜎𝑜𝑔

which contains an occasion not allocated to the maximum likelihood subtree. In this case, by defini-
tion the occasion must have an associated probability less than that of the corresponding transition
in the subgraph. However, because probabilities are necessarily monotonically decreasing, the
sequence 𝜎′𝑜𝑔 using the subgraph’s instance for the given transition will have higher probability
than the assumed solution, and thus 𝜎𝑜𝑔 is not optimal.

Note that this proof applies to either probabilitymodel: that each graph contains amaximal slicewith
respect to either projection is sufficient. Given that the optimal path is then known to be embedded
within the maximum likelihood subgraph, we can demonstrate that the inference algorithm extracts
the maximally likely path:

Theorem The sequence inference algorithm extracts the 𝜎𝑜𝑔 representing the maximal joint prob-
ability sequence representing a path from 𝑠𝑖 to 𝑠𝑔.

Proof Consider that all probabilities are on the range [0, 1], and that the joint probability function
(Equation 3) is therefor monotonically decreasing. We proceed by induction on the distance from
𝑠𝑖. The first node selected will have the maximum probability edge of all leading from 𝑠𝑖 to 𝑠𝑖+1,
and thus any alternate path to this node is bounded by that single probability. Continuing on, at any
point in the sequence, each successive joint probability is further bound by the product of the prior
and current occasion. As such, any higher probability bound occasion would have to be off of the
maximum probability tree in AFI, a contradiction to Theorem 1.

The action policy derived from planning on the maximal probability subgraphs is thus optimal, and
the need for designation of a reward function to drive convergence is unnecessary. These proofs
reflect those of [7], for SSP, however are simplified substantially by the structure of the maximum
likelihood subgraph.

787

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

Figure 5: Conversion of Maximal Probability path tree to Markov Chain. highlighting states 𝑠2, 𝑠1,
and 𝑔, with maximal probability actions 𝑎2 and 𝑎1 linking them, and additional possible
results of taking those actions leading to other states besides the intended result, shown
in the Markov network

2.3.2 Predictive behavior analysis

For planning purposes we proceeded by finding the highest probability expected path to the goal,
but for this analysis, we will not keep a specific starting state in mind. Instead, we build the tree
of maximal probability paths rooted in the (arbitrary) goal state. We denote this tree as 𝑇𝑃 (𝑔) . This
tree will contain all maximal 𝜎𝑖𝑔.

Within this tree, each maximally likely transition indicates the associated action most likely to
effect that transition: the action the agent will choose when in that state via Equation 4. However,
because each action is assumed to be non-deterministic, it will include probabilities for arriving
at non–intended states as well: 𝑎𝑙 (𝑠𝑖) : {(𝑠 𝑗1 |𝑃 𝑗1), (𝑠 𝑗2 |𝑃 𝑗2), ...}. We construct the transition
table from these segments of INC for all states, each having a stochastic vector associated with
it: ®𝑡𝑖 = 𝐴𝐹𝐼 [𝑠𝑖 , 𝜋(𝑠𝑖), :]. For 𝑠𝑔 the operation of the agent effectively terminates, and so ®𝑠𝑔’s
entries are 0 excepting the entry ®𝑠𝑔 [𝑔], which is 1; ®𝑡𝑔 =

[
0 0... 1.. 0...

]𝑇 , adopting the absorbing
state method of [6]. From this concatenation, we have the transition table, 𝑃𝑔, which enables us
to acquire a picture of system behavior over time. We concatenate all these states to acquire the
transition table:

𝑃𝑔 =
[®𝑡0 ®𝑡1... ®𝑡𝑔 ... ®𝑡 𝑗] (5)

A graphical representation of this conversion is illustrated in FIGURE 5.

It is important to note here that the conversion does not result in tree–like structure in 𝑃𝑔: non-
optimal transitions are also embedded so long as they result from optimal actions. However, sub-
problem optimality is retained: the subsequent path in 𝑇𝑃 (𝑔) from an incidental non–optimal state
is optimal with respect to the new state.

We can model statistical propagation by representing the state distribution itself as a vector, ®𝑠𝑘 ,
where 𝑘 is taken to be step number. At 𝑘 = 0, we have the known starting state at 𝑃(𝑠0) = 1.0, and
so ®𝑠0 will also be zero vector excepting the 𝑠0 element, which is 1. The state occupation distribution

788

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

as a function of step time is then given by:

®𝑠𝑘 = 𝑃𝑘
𝑔 · ®𝑠0 (6)

which represents the stochastic vector of probable states evolved from 𝑠0 over time; and further the
corresponding column of 𝑃𝑘

𝑔 represents the probability of state occupation at step 𝑘 for the given
starting state. Within 𝑃𝑔, columns represent probability vectors over states, such that Σ 𝑗𝑃𝑔 [𝑖, 𝑗] =
®11×|S | . Consequently, | | ®𝑠𝑘 | |1 = 1, which is sensible as it is a probability vector. Now, because
®𝑠𝑘 = 𝑃𝑔 · ®𝑠𝑘−1 = 𝑃𝑔 (𝑃𝑘−1

𝑔 · ®𝑠0), we can define the stationary state distributions by | |®𝑠𝑘 − ®𝑠𝑘−1 | |1 < 𝜖 ,
or: 𝑃𝑔 · ®𝑠𝑘−1 ≤ (1 + ®𝜖)®𝑠𝑘−1, which further implies that:

𝑃𝑘−𝑚+1
𝑔 · ®𝑠𝑘−1 ≤ (1 + ®𝜖)𝑘®𝑠0

Which necessitates that any attractor state either be an eigenvector of 𝑃𝑔 with 𝜆 = 1, or rbitrarily
close to an initial state. 𝜆 = 1 eigenvectors of any transition matrix are also steady states. However,
𝑃𝑔 has has no steady-state distribution by virtue of the presence of 𝑠𝑔. Presume that we arrange 𝑃𝑔

such that 𝑠𝑔 corresponds to the last element. We then have:

𝑃𝑔 =

(
𝑇𝑠 ®0
®𝑡𝑔 1

)
Where 𝑇𝑠 is the transition matrix internal to only non-goal states, ®𝑡𝑔 is the vector of transition
probabilities from {𝑠𝑖 ∈ 𝑆 |𝑖 ≠ 𝑔}, and the final column is the stochastic vector of 𝑠𝑔. We can
then write:

𝑃𝑘
𝑔 =

(
𝑇 𝑘
𝑠

®0
®𝑡𝑔 · Σ𝑘−1

𝑙=1 𝑇 𝑙
𝑠 + ®𝑡𝑔 1

)
(7)

This expression precisely describes the probability distribution of the agent’s occupation of states
as a function of step time. From it, we can see that the probability of reaching the goal state at step
k is given by

®𝑃(𝑠𝑖 → 𝑠𝑔 |𝑘) = ®𝑡𝑔 ·
𝑘−1∑
𝑚=1

𝑇𝑚
𝑠 + ®𝑡𝑔 (8)

We can further note that for a given state distribution ®𝑠𝑘 , at time 𝑘 we can express the probability
of transition to the goal state at some future time 𝑘 ′ = 𝑘 + 𝛿𝑘:

𝑃(𝑠𝑔 |®𝑠𝑘 , 𝑘 ′) = (®𝑡𝑔 ·
𝛿𝑘−1∑
𝑚=1

𝑇𝑚
𝑠 + ®𝑡𝑔) · (®𝑠𝑘) (9)

Because 𝑇𝑔 is strictly positive definite, 𝑃(𝑠𝑖 → 𝑠𝑔 |𝑘) is monotonically increasing in 𝑘 , and therefor
𝑃𝑔 has no steady state. This means that 𝑠𝑔 must be an attractor state, as it is identical to its own
start-state distribution. Further, no other state can be an attractor unless there is a zero probability
of transitioning out from that state. Such states may be present in 𝑃𝑔 due to the stochastic nature
of 𝑎𝑙. We can therefore define the probability of reaching the goal state at any given step number,
establish the expected number of steps to reach the goal, and calculate the probability of the agent
being sequestered at non-goal attractors.

Because the columns of 𝑃𝑔 are stochastic, we can make the following relation:

®11×|S | − ®11×|S |𝑇
𝑘
𝑠 = ®𝑡𝑔 (Σ𝑘−1

𝑚=1𝑇
𝑚
𝑠 + 𝐼 |S |)

789

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

®11×|S | = ®11×|S |𝑇
𝑘
𝑠 +

𝑘−1∑
𝑚=1
®𝑡𝑔𝑇𝑚

𝑠 + ®𝑡𝑔 (10)

which bounds the probability distribution of system states as a function of step time. Because
there are no steady states, barring those constructed in the same form as a goal state, < ®0, 1, ®0 >,
and because 𝑇 𝑘

𝑠 is positive definite, the probability distribution of goal transitions must be strictly
monotonic over time.

2.3.3 Trap nets

We have assumed the form of the goal state as < ®0, 1 >, which makes it an attractor state, and other
states with unit self–transition probabilities are the only unwanted attractor states. However, it is
also possible that sequences which present no path to the goal once reached to exist. We will refer
to such sets as ’trap nets’, illustrated in FIGURE 6.

Defining a subset, 𝑡𝑛𝑒𝑡, to represent these states, we can organize 𝑃𝑔 for analysis by aligning the
rows and columns associated with the subnet 𝑡𝑛𝑒𝑡, noting that states in 𝑡𝑛𝑒𝑡 can transfer between
one another, but not to other states not in 𝑡𝑛𝑒𝑡:

𝑃𝑔 =
©«
𝑇𝑠∉𝑡𝑛𝑒𝑡 0 ®0
𝑇𝑠∈𝑡𝑛𝑒𝑡 𝑇𝑡𝑛𝑒𝑡 ®0
®𝑡𝑔 |𝑖∉𝑡𝑛𝑒𝑡 ®0 1

ª®®¬
Which we can expand into the successive probability distribution:

𝑃𝑘
𝑔 =

©«
𝑇 𝑘
𝑠∉𝑡𝑛𝑒𝑡 0 ®0

Σ𝑘−1
𝑗=0 𝑇

𝑗
𝑡𝑛𝑒𝑡𝑇𝑠∈𝑡𝑛𝑒𝑡𝑇

𝑘−1− 𝑗
𝑠∉𝑡𝑛𝑒𝑡 𝑇 𝑘

𝑡𝑛𝑒𝑡
®0

Σ𝑘−1
𝑗=0 ®𝑡𝑔 |𝑖∉𝑡𝑛𝑒𝑡𝑇

𝑗
𝑠∉𝑡𝑛𝑒𝑡

®0 1

ª®®¬ (11)

From which we can see that 𝑃(𝑠𝑖∈𝑡𝑛𝑒𝑡 → 𝑠𝑔 |𝑘) = ®0 for all k. Further, define a system parameter
𝐿𝑚𝑎𝑥: the longest minimal path between any state and the goal. For any reachable state 𝑠𝑖, 𝑃(𝑠𝑖 →

Figure 6: Illustration of subgraph segment from which no path to the goal exists, yet contains
multiple transition state cycles. Such regions can present non-steady state attractors from
which the agent cannot progress to the goal, hence being considered ’trapped’ in the
subgraph.

790

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

𝑠𝑔 |𝐿𝑚𝑎𝑥) > 0: There is a non-zero probability that 𝑠𝑖 → 𝑠𝑔 has occurred after 𝐿𝑚𝑎𝑥 timesteps. We
can test if a state is a member of a trap net, as the final row of 𝑃𝐿𝑚𝑎𝑥

𝑔 will contain only 0 probability
entries in states from which the goal is unreachable. We might determine 𝐿𝑚𝑎𝑥 by analysis of 𝑃𝑔,
but it is sufficient to raise 𝑃𝑔 to a power greater than 𝐿𝑚𝑎𝑥 . The maximum path length is bounded
by the size of the graph, and so any state 𝑖 for which 𝑃(𝑠𝑔 |®𝑠𝑖 , 𝑘 = |S|) = 0 is necessarily a member
of a trap net.

We can then use Equation 6 to determine the explicit probability at any point in time that the system
has become stranded in a trap net, using Equation 11:

𝑃(𝑠𝑡 ∈ 𝑡𝑛𝑒𝑡 |𝑘) = ®11×|𝑡𝑛𝑒𝑡 | ·
(∑𝑘−1

𝑗=0 𝑇
𝑗
𝑡𝑛𝑒𝑡𝑇𝑠∈𝑡𝑛𝑒𝑡𝑇

𝑘−1− 𝑗
𝑠∉𝑡𝑛𝑒𝑡 𝑇 𝑘

𝑡𝑛𝑒𝑡
®0
)
· ®𝑠𝑡

The identification of single attractor states and trap nets together provides a rigorous analysis of the
reachability of the goal from all other states as a statistical distribution of time for all states, ex-
tending the connectivity approach as used in [14]. Combined with Equation 6, the goal–convergent
behavior of the agent can be fully, explicitly defined, resolving the problem discussed explicitly in
[6].

2.3.4 Derivation of bounded time performance

The evolution of the L1 norm of𝑇 𝑘
𝑠 is a useful metric, as the L1 norm is intimately related to the sum

of the columns in a matrix, and thus the joint probability of stochastic vectors arranged in matrix
form. As with all vector induced norms, L1 is submultiplicative, and so:

‖𝑇 𝑘
𝑠 ‖1 ≤ ‖𝑇𝑠 ‖𝑘1

Because all columns are stochastic, the maximum absolute column sum is paired with the minimum
probability single step goal transition, such that:

‖𝑇 𝑘
𝑠 ‖1 ≤ (1 −min

∀𝑎,𝑖
𝑃𝑔 [𝑠𝑖 , 𝑔, 𝑎])𝑘

For many systems, min∀𝑎,𝑖 𝑃𝑔 [𝑠𝑖 , 𝑔, 𝑎] = 0, which provides little insight, but at 𝑘 = 𝐿𝑚𝑎𝑥 , all states
from which the goal is reachable have a non-zero transition probability:{

‖𝑇 𝑘
𝑠 ‖1 = 0 𝑘 < 𝐿𝑚𝑎𝑥

‖𝑇 𝑘
𝑠 ‖1 ≤ ‖𝑇𝐿𝑚𝑎𝑥

𝑠 ‖𝑘−𝐿𝑚𝑎𝑥

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(12)

Allowing the calculation of the minimum time at which all states surpass a threshold likelihood
reaching the goal, without projecting the system forward in time. In general, for some minimum
transition probability threshold 𝑃𝑡ℎ𝑟𝑒𝑠ℎ:

1 − 𝑃𝑡ℎ𝑟𝑒𝑠ℎ ≤ ‖𝑇𝐿𝑚𝑎𝑥
𝑠 ‖𝑘𝑝−𝐿𝑚𝑎𝑥

1

𝑘 𝑝 ≥
𝑙𝑜𝑔(1 − 𝑃𝑡ℎ𝑟𝑒𝑠ℎ)
𝑙𝑜𝑔(‖𝑇𝐿𝑚𝑎𝑥

𝑠 ‖1)
+ 𝐿𝑚𝑎𝑥 (13)

Which establishes the progression curve of states towards the goal in terms of 𝑇𝑠 and the effective
’distance’ between the starting state and the goal. Writing the relation slightly differently, as 1 −
‖𝑇𝐿𝑚𝑎𝑥

𝑠 ‖𝑘𝑝−𝐿𝑚𝑎𝑥

1 ≤ 𝑃𝑡ℎ𝑟𝑒𝑠ℎ, shows the probability of transition to goal is bounded by an exponential
growth rate, illustrating that even under stochastic disturbances the probability of reaching the goal
rises to unity at an exponential rate.

791

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

2.3.5 Analysis of robustness under perturbation

Validation against an abstract model is often challenging, and learning algorithms often implement
some level of inherent abstraction. We will consider an abstracted learning problem one with a
mapping 𝛼() transforming a state space 𝑆 into a mixed space 𝛼(𝑆). 𝛼 need not be strictly surjective,
but for purposes of analysis, we will consider only state pairs in the domain of 𝑆 and the codomain
{𝛼(𝑠𝑖) |∀𝑠𝑖}. This probabilistic mapping model is similar to that used by [11]. Note that a map
modeling uncertainty as a mixing transfor

Define an |𝛼 | × |S| transformation matrix, 𝛼𝑇 , where 𝛼[𝑗 , 𝑖] the probability 𝑃(𝛼(𝑠𝑖) = 𝛼(𝑗)) that
the 𝑖𝑡ℎ ’true’ state is mapped onto the 𝑗 𝑡ℎ abstracted state. For a state probability vector ®𝑠𝑡 , the
corresponding probability vector in the abstracted state space is given by ®𝑠𝛼𝑡 = 𝛼𝑇 · ®𝑠𝑡 , or, for
general time propagation: ®𝑠𝛼𝑡 = 𝛼𝑇 · 𝑃𝑡

𝑔 · ®𝑠0. Given an AFI subgraph for the abstracted space, 𝑃𝛼,
we also have ®𝑠𝛼𝑡 = 𝑃𝑡

𝛼®𝑠𝛼0, and since ®𝑠𝛼0 = 𝛼𝑇 ®𝑠0 we can construct a relation from the equivalence
𝛼𝑇𝑃

𝑡
𝑔 = 𝑃𝑡

𝛼𝛼𝑇 : {
𝑃𝑡
𝛼 = 𝛼𝑇𝑃

𝑡
𝑔𝛼
+
𝑇

𝑃𝑡
𝑔 = 𝛼+𝑇𝑃

𝑡
𝛼𝛼𝑇

Where 𝛼+𝑇 is the pseudoinverse of 𝛼𝑇 . These relations convert the probability space of the abstrac-
tion into that of the grounded problem. This transform does not recover the true state space, even
if 𝛼𝑇 is known perfectly, as 𝛼+𝑇 cannot unmix states which are combined. Mathematically, this is
realized by 𝛼+𝑇 not being strictly positive definite.

We can note that: 𝑃𝑡
𝛼 = 𝛼𝑇𝑃

𝑡
𝑔𝛼
+
𝑇 = (𝛼𝑇𝑃𝑔𝛼

+
𝑇)𝑡 . For 𝑡 = 2, 𝛼𝑇𝑃

2
𝑔𝛼
+
𝑇 = 𝛼𝑇𝑃𝑔𝛼

+
𝑇𝛼𝑇𝑃𝑔𝛼

+
𝑇 , or

𝛼+𝑇𝛼𝑇 = 𝐼, implying that the columns of 𝛼𝑇 must be linearly independent. We can thus derive
useful partitions by recognizing that both arrays must be stochastic transforms:

𝛼𝑇 =

(
𝛼𝑇𝑠 𝛼𝑇𝑔

®1 − ®1𝛼𝑇𝑆 1 − ®1𝛼𝑇𝑔

)
, 𝛼+𝑇 =

(
𝛼+𝑇𝑠 𝛼+𝑇𝑔

®1 − ®1𝛼+𝑇𝑆 1 − ®1𝛼+𝑇𝑔

)
Assuming that the abstracted model is convergent, we will derive conditions for the ’true’ system
to converge as well. Taking Equation 7 where we annotate: ®𝑡𝛼𝑔 ·

∑𝑘−1
𝑙=1 𝑇 𝑙

𝛼𝑠 + ®𝑡𝛼𝑔 = 𝑉𝑝:

𝑃𝑘
𝑔 =

(
𝑇 𝑘
𝑠

®0
®𝑃(𝑠𝑖 → 𝑠𝑔 |𝑘) 1

)
=

(
𝛼+𝑇𝑠 𝛼+𝑇𝑔

®1 − ®1𝛼+𝑇𝑆 1 − ®1𝛼+𝑇𝑔

)
·
(
𝑇 𝑘
𝛼𝑠
®0

𝑉𝑝 1

)
·
(

𝛼𝑇𝑠 𝛼𝑇𝑔

®1 − ®1𝛼𝑇𝑆 1 − ®1𝛼𝑇𝑔

)
Expanding 𝑃𝑘

𝑔 lets us calculate the probability of goal transition in the true space:

®𝑃(𝑠𝑖 → 𝑠𝑔 |𝑘) = 𝑉𝑝𝛼𝑇𝑠 − ®1𝛼+𝑇𝑔𝑉𝑝𝛼𝑇𝑠 + ®1𝑇 𝑘
𝛼𝑠𝛼𝑇𝑠 − ®1𝛼+𝑇𝑠𝑇 𝑘

𝛼𝑠𝛼𝑇𝑠 + ®1 − ®1𝛼+𝑇𝑔®1 − ®1𝛼𝑇𝑠 + ®1𝛼+𝑇𝑔®1𝛼𝑇𝑠

using the relations ®1𝑇 𝑘
𝛼𝑠 = 1 −𝑉𝑝, and ®1𝛼+𝑇𝑔 = | |𝛼+𝑇𝑔 | | we can re-cast this expression as:

®𝑃(𝑠𝑖 → 𝑠𝑔 |𝑘) = ®1 + ||𝛼+𝑇𝑔 | | (®1𝛼𝑇𝑠 − ®1) − ||𝛼+𝑇𝑔 | |𝑉𝑝𝛼𝑇𝑠 − ®1𝛼+𝑇𝑠𝑇 𝑘
𝛼𝑠𝛼𝑇𝑠

We presumed that 𝑃𝛼 is convergent, and thus we can note the limiting behavior of 𝑇 𝑘
𝛼𝑠 and 𝑉𝑝:{

lim𝑘→∞𝑉𝑝 = ®1
lim𝑘→∞ 𝑇 𝑘

𝛼𝑠 = 0

792

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

From which the limiting behavior of ®𝑃(𝑠𝑖 → 𝑠𝑔 |𝑘) can be determined:

lim
𝑘→∞

®𝑃(𝑠𝑖 → 𝑠𝑔 |𝑘) = ®1 − ||𝛼+𝑇𝑔 | |®1

Convergence of 𝑃𝑔 can be expressed as ®𝑃(𝑠𝑖 → 𝑠𝑔 |𝑘) → ®1, so: 0 = | |𝛼+𝑇𝑔 | |, showing that
convergence of the true system, given convergence of the abstracted system, is predicated on the
transform between the true and abstracted goal states being onto. This condition is analogous to,
but distinct from, the convergence conditions derived in [14], and mirrors the observability model
in [13]. GAP solutions will thus retain optimality and convergence properties in transformed spaces
when this condition is met.

2.3.6 Impact of perturbed state on performance

We can further extend the derivations in Section 4.2 to the case of performance of an abstracted
system, assuming the condition derived above. Beginning with the relation | |𝑇 𝑘

𝑠 | |1 ≤ ||𝑇𝑠 | |𝑘1 for the
true state system:

| |𝑇𝑠 | |𝑘1 ≥ ||𝛼+𝑇𝑠𝑇𝛼𝑘𝛼𝑇𝑠+𝛼+𝑇𝑔𝑉𝑝𝛼𝑇𝑠+𝛼+𝑇𝑔®1−𝛼+𝑇𝑔®1𝛼𝑇𝑠 | |1 ≥ ||𝛼+𝑇𝑠𝑇𝛼𝑘𝛼𝑇𝑠 | |1+||𝛼+𝑇𝑔 | |1(1−||𝑇𝛼𝑘 | |1 | |𝛼𝑇𝑠 | |1)

Because 𝛼+𝑇𝑔 is a vector, | |𝛼+𝑇𝑔 | |1 ≥ ||𝛼+𝑇𝑔 | |, and | |𝑇𝛼𝑘 | |1, | |𝛼𝑇𝑠 | |1 are submatricies of stochatic
matricies, they are strictly in [0, 1] (though this is not the case for | |𝛼+𝑇𝑠 | |1, and so this derivation
applies only 𝑃𝛼 → 𝑃𝑔 and not to 𝑃𝑔 → 𝑃𝛼: convergence of the abstracted model implies
convergence of the true model, but not the converse), so:

| |𝑇𝑠 | |𝑘1 ≥ ||𝛼+𝑇𝑠𝑇𝛼𝑘𝛼𝑇𝑠 | |1+||𝛼+𝑇𝑔 | | (1−||𝑇𝛼𝑘 | |1 | |𝛼𝑇𝑠 | |1) ≥ ||𝛼+𝑇𝑠𝑇𝛼𝑘𝛼𝑇𝑠 | |1 = | |𝛼+𝑇𝑠 | |1 · | |𝑇𝛼𝑘 | |1 · | |𝛼𝑇𝑠 | |1

From this inequality, we can then replicate Equation 13 for the abstracted case:

1 − 𝑃𝑡ℎ𝑟𝑒𝑠ℎ ≤ (||𝛼+𝑇𝑠 | |1 · | |𝑇𝛼𝑘 | |1 · | |𝛼𝑇𝑠 | |1)𝑘𝑝𝛼−𝐿𝑚𝑎𝑥

𝑘 𝑝𝛼 ≥
𝑙𝑜𝑔(1 − 𝑃𝑡ℎ𝑟𝑒𝑠ℎ)

𝑙𝑜𝑔(| |𝛼+𝑇𝑠 | |1 · | |𝑇𝛼𝑘 | |1 · | |𝛼𝑇𝑠 | |1)
+ 𝐿𝑚𝑎𝑥 (14)

Which describes how the abstraction modifies the expected efficiency of the agent. By examining
this expression, we can make some inferences about the impact of 𝛼𝑇 on performance:{

𝑘 𝑝𝛼 > 𝑘 𝑝 | |𝛼𝑇𝑠 | |1 · | |𝛼+𝑇𝑠 | |1 < 1
𝑘 𝑝𝛼 ≤ 𝑘 𝑝 | |𝛼𝑇𝑠 | |1 · | |𝛼+𝑇𝑠 | |1 ≥ 1 (15)

We can use the product above as a rough measure of the ’quality’ of an abstraction, the degree to
which it effects performance, by defining:

𝑄(𝛼𝑇) =
1

| |𝛼𝑇𝑠 | |1 · | |𝛼+𝑇𝑠 | |1

𝑄(𝛼𝑇) is directly correlated to the impact 𝛼𝑇 has on performance, resolving the metric problem
brought up in [16]. Because 𝛼+𝑇 is not strictly positive definite, 𝛼𝑇 which improve performance
are possible, albeit difficult to design. An abstraction may either improve or reduce efficacy,
depending on the nature of the abstraction, which may seem counter-intuitive, but consider the

793

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

way a substitution may reduce the number of steps needed to solve an algebraic equation. Certain
simplifications may bias portions of the graph towards choosing equally likely but shorter paths,
minimizing stochastic variance, an observation also noted by [11].

We can approximate thismeasure using the relation between 𝑘 𝑝 and themeasured 𝑘 𝑝𝛼 as the average
number of steps to reach the goal over many iterations:

𝑘 𝑝𝛼 − 𝑘 𝑝

𝑘 𝑝 − 𝐿𝑚𝑎𝑥
=
𝑙𝑜𝑔(| |𝛼+𝑇𝑠 | |1 · | |𝛼𝑇𝑠 | |1)

𝑙𝑜𝑔(| |𝑇𝛼𝑘 | |1)

| |𝑇𝛼𝑘 | |
𝑘𝑝−𝑘𝑝𝛼
𝑘𝑝−𝐿𝑚𝑎𝑥

1 = 𝑄(𝛼𝑇) (16)

This provides a metric of the relative efficacy of the abstraction from measurable values, specifying
the impact on performance with a perturbation model and underwriting the effectiveness of the GAP
for operating under an abstraction or uncertainty.

2.3.7 Learning convergence

The behavior of the agent as a learning system can be modeled by treating the learned AFI matrix
as an abstracted function of the true state which becomes more accurate as learning progresses. The
initial transform maps true states onto a uniform distribution from which actions are initially chosen
randomly: {

𝛼𝑇1 = 1
|𝛼 | · 1

𝛼+𝑇1 = 1
|S | · 1

We can see that: | |𝛼𝑇1 | |1 = |𝛼 |−1
|𝛼 | and | |𝛼+𝑇1 | |1 = |S |−1

|S | . Further, labeling 𝑃𝑔 as the asymptotic
matrix and 𝑃𝛼 the non-learned array, |𝛼 | = |S|. We can approximate the expected learning curves
with an amortized update at each step 𝑘 derived from Equation 2. An update to a single state vector
in the average case has the state visited 𝑘

|S | times, and the individual visit counts can be expressed
as 𝑘
|S | ®𝑠𝛼𝑖 , also via Equation 2. The distribution for the increase in counts can be expressed by ®𝑠𝑖

(the asymptotic learned behavior), the corresponding expectation of the column in 𝑃𝑔. Combining
all this for 𝑘+1

|S | steps gives:

®𝑠′𝛼𝑖 =
(
𝑘

|S| ®𝑠𝛼𝑖 +
1
|S| ®𝑠𝑖

)
· 1

𝑘
|S | +

1
|S |

=
𝑘®𝑠𝛼𝑖 + ®𝑠𝑖
𝑘 + 1

𝛿®𝑠𝛼𝑖 = ®𝑠′𝛼𝑖 − ®𝑠𝛼𝑖 =
®𝑠𝑖 − ®𝑠𝛼𝑖
𝑘 + 1

Which, in aggregate, gives the expression across the full transition array:

𝛿𝑃𝛼𝑘 =
𝑃𝑔 − 𝑃𝛼𝑘

𝑘 + 1

For the recurrence relation: {
𝑃𝛼𝑘+1 =

𝑘𝑃𝛼𝑘+𝑃𝑔

𝑘+1
𝑃𝛼1 = 1

|S |2 · 1 · 𝑃𝑔 · 1

794

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

𝑃𝛼𝑘 =

[1 · 𝑃𝑔 · 1
𝑘 |S|2 + 𝑘 − 1

𝑘
𝑃𝑔

]
= 𝛼𝑇𝑘𝑃𝑔𝛼

+
𝑇𝑘 (17)

Which we can express in similar block fashion as above:

1
𝑘 |S|

(
1 + |S|(𝑘 − 1)𝑇𝑠 ®1
®1 + |S|(𝑘 − 1)𝑃(𝑔) 1 + |S|(𝑘 − 1)

)
𝛼𝑇𝑘 = 𝛼𝑇𝑘𝑃𝑔

And calculate the non-goal block of each side, using the general form for 𝛼𝑇𝑘(
1 − 𝑘 |S|
𝑘 |S| 1 + 𝑘 − 1

𝑘
𝑇𝑠

)
+ 1𝛼+𝑇𝑠 = 𝛼𝑇𝑠𝑇𝛼𝑠𝛼

+
𝑇𝑠 + 𝛼𝑇𝑔𝑉𝑃𝛼

+
𝑇𝑠[1 |S |−1

𝑘 |S| +
𝑘 − 1
𝑘

𝑇𝑠

]
− 𝛼𝑇𝑔®1 + 𝛼𝑇𝑔®1𝛼+𝑇𝑠 = 𝛼𝑇𝑠𝑇𝑠𝛼

+
𝑇𝑠 + 𝛼𝑇𝑔𝑃(𝑔)𝛼+𝑇𝑠

Because the right sides of both equations above are equivalent we can equate and simplify, and in
the limit case where 𝑘 →∞:

(1 − 𝛼𝑇𝑔®1)𝛼+𝑇𝑠 = 1 − 𝛼𝑇𝑔®1→ 𝛼+𝑇𝑠 = I→ 𝛼𝑇𝑠 = I

Showing that as 𝑃𝛼 is learned, the abstraction transform approaches the identity, and thus GAP
agent training will be convergent on basis of Equations 2 and 10.

2.3.8 Derivation of learning curve form

We can also demonstrate that learning will be efficient by deriving the average form of the learning
curve. Equation 17 allows us to determine the amortized form of the transition array:

𝑃𝛼𝑘 =
1
𝑘

(
1
|S| − 𝑃𝑔

)
+ 𝑃𝑔

In which the terms 1
|S | −𝑃𝑔 and 𝑃𝑔 are time invariant, dynamic behavior governed by the reciprocal

of the timestep, 1
𝑘 . The average learning curvewill thus follow a reciprocal pattern 𝑘 𝑝𝛼 (𝑘) = 𝐴 1

𝑘+𝐵,
where 𝐵 is the asymptotic path to goal length, 𝑘 𝑝. To determine 𝐴, we can evaluate the initial
behavior of the system given the form for 𝛼𝑇1 and Equation 17, 𝑘 𝑝𝛼 (1) − 𝑘 𝑝 = 𝐴:

𝐴 = (𝑘 𝑝 − 𝐿𝑚𝑎𝑥)
2𝑙𝑜𝑔(|S|) − 2𝑙𝑜𝑔(|S| − 1)

𝑙𝑜𝑔(| |𝑇𝛼1 | |1)

| |𝑇𝛼1 | |1 can be directly calculated from 𝛼𝑇1𝑃𝑔𝛼
+
𝑇1 as

|S |−1
|S | , so 𝐴 = 2(𝐿𝑚𝑎𝑥 − 𝑘 𝑝), and:

𝑘 𝑝𝛼 (𝑘) =
2(𝐿𝑚𝑎𝑥 − 𝑘 𝑝)

𝑘
+ 𝑘 𝑝 (18)

Establishing the performance of the unlearned system as a random walk with 𝑘 𝑝𝛼 (1) = 2𝐿𝑚𝑎𝑥 −
𝑘 𝑝, and the average learning curve as an offset reciprocal function of epoch number, showing that
learning will be efficient, and tied to bounded system characteristics.

795

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

3. DEMONSTRATION CASES

In this section we explore thebehavior of GAP agents in example problem classes. These tasks
includes specific hierarchical components, complex and large state spaces, and have been used
previously as benchmark trials for machine learning algorithms, initially in [17], for the TAXI
domain, Mazes by [18], and the Tower of Hanoi by [19].

3.1 Experimental procedures

Prior to detailing the experiments themselves, we outline the common procedures used across all
trials which are not specific to any one problem case.

The AFI datastructure is initialized with a uniform distribution of random values, as in Section
4. The agent proceeds in the simulation environment acting on basis of the current state of the AFI
array until achieving the goal state, terminating the epoch, upon which event the simulation world is
reset and the INC array persisting between epochs. We calculate plans using the a priori probability
model.

To investigate system performance under uncertainty, we also artificially induce error in some trials,
with a random threshold process executing a random non–planned action. Action modifications are
selected because discontinuous transitions do not model real world uncertainties well, and because
if there is an error in state detection, the agent will take action based on the fault state: an action
independent of the current state.

Because we are intending to make a fully abstracted learning agent, every agent is built without
labeled states. Simulation models output string reports when polled, and from these a hash lookup
table is generated. As more states are discovered, the size of the augmented hypergraph is increased
to accommodate larger lookup tables. The total state space occupation for the GAP agent will
thus only include observed states, using sparsity to our advantage. We indicate the size of the
accumulated state space with the |S|𝑚𝑎𝑥 value- the largest number of states observed throughout
the training process.

Demonstration of effectiveness is made by comparing accuracy of previously defined performance
measures. We calculate best fit equations for the learning curves and measure of their accuracy: 𝑅2

for the fit of 𝑘 𝑝𝛼 = 𝐴
𝑘 + 𝐵, and percentage off–linear (”%OL”) averages of linear regressions on the

plots of (1𝑘 , 𝑘 𝑝) calculated for 𝑁 sequential data points on the curve as:
∑
∀𝑛∈𝑁

1
𝑁

|𝑘𝑝 [𝑛]−(𝐴1
𝑛+𝐵) |

𝑘𝑝 [𝑛] .
We also compare approximations of 𝑘 𝑝 and 𝐿𝑚𝑎𝑥 to correlate the analysis in Section 4 and the
measured data. 𝑘 𝑝, calculations by computation of the fit curve for Equation 18 (”𝑘 𝑝 I”), and
average performance after convergence (”𝑘 𝑝 II”). 𝐿𝑚𝑎𝑥 comparisons are made between Equation
16 (”𝐿𝑚𝑎𝑥 I”) and Equation 13 (”𝐿𝑚𝑎𝑥 II”), estimated over levels of 𝑃𝑡ℎ𝑟𝑒𝑠ℎ, identifing the values
for 𝑃𝑡ℎ𝑟𝑒𝑠ℎ at which the inequality is no longer valid.

To put context on the effectiveness of the GAP algorithm, we compare it to two baselines- Q Learn-
ing, and Markov Decision Processes, chosen because the GAP algorithm includes both learning and
stochastic optimization. Comparisons to Q Learning are made to illustrate the speed and flexibility
of learning, and MDPs to illustrate the efficacy of that learning. QL and MDPs require reward

796

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

Figure 7: Illustration of a basic STRIPS-style world, containing linked location states (𝐿𝑖) and
multiple independent actionable states (𝑉1 and 𝐷1)

functions to converge, so to ensure they reflect the same system, we implement the reward function:
𝑅(𝑠𝑖 , 𝑎𝑙) = 𝑙𝑜𝑔(𝑃(𝑎𝑙 (𝑠𝑖) → 𝑠𝑖+1)) + 𝑙𝑜𝑔(𝑃(𝜎(𝑖 + 1, 𝑔))) which mimics the GAP algorithm’s
optimization. In our results, ”QL 𝑘 𝑝” is the average number of steps to reach the goal for the trained
QL agent, ”QL Ep.” is the number of epochs for the QL agent to converge, where ”NC” indicates
failure to converge after 1000 epochs (1000 epochs chosen as the cut-off by being approximately 2
orders of magnitude greater than the GAP convergence period observed in all pilot experiments).
”MDP 𝑘 𝑝” is the average shortest path to the goal found by an MDP planner using Value Iteration.

3.2 STRIPS-type Problems

We begin with a STRIPS-type planning problem, schematically represented in FIGURE 7. The
agent can take set of move operations which translate it, a pair of world manipulating actions (to
fetch an item and open a door), an internal state (possession of an item), an external state (location)
and a hidden state (status of the door), with |S|𝑚𝑎𝑥 = 52, and a random startign location. This
represents a hierarchically ordered workspace, critical because expressing functionality within such
problems is a key milestone for learning algorithms.

Displayed in FIGURE 8 is the average learning curve, derived over 1000 iterations beginning from
no training, and across random induced error levels from 0% to 50%. On this plot we see a reciprocal

Figure 8: Average learning curve over instances of varying error from 0% to 50% in the STRIPS
problem space, with the reciprocal fit curve plotted superimposed

797

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

Figure 9: Learning curves for the STRIPS problem across levels of induced error from 0% to
50%, along with plots of 𝑘 𝑝 as a function of 1

𝑘 for various error levels, along with
measures of the deviation from linearity in terms of % off–linear behavior, showing close
correspondence to the predicted learning curve form of 𝑘 𝑝 = 𝐴 1

𝑘 + 𝐵

fit curve of 𝑘 𝑝 (𝑘) = 62.3 1
𝑘 +38.9 at 𝑅2 = 0.79, and asymptotic learned performance approximately

39 steps between the starting state and the goal, compared to the no error absolute minima of 17.

FIGURE 9 showcases the learning at each error level, averaged over 50 trials. Learning tends to
follow the same reciprocal pattern as the general curve, with variance in asymptotic performance
due to the increase in error rate. To reinforce the reciprocal relationship, we plot linearizations
and the off–linear percent labeled in TABLE I. The deviation from linear fit is relatively low, with
the greatest deviation being for the 15% curve. The difference between asymptotic 𝑘 𝑝 and the fit
functions ranging from 0.87% to 7.12% for induced errors up to 40%, and the difference between
the the measured and predicted 𝐿𝑚𝑎𝑥 is 7.8%, indicating very close correspondence between the
observed performance and the predictions of Equations 18 and 12.

Of note is the 50% error case, for which the discrepancy is roughly twice other cases. Referring
to Equation 16, we can see that as randomness grows, the difference between 𝑘 𝑝𝛼 (𝑘) and 𝑘 𝑝𝛼 (0)
shrinks: lim𝑘→∞ 𝑘 𝑝𝛼 (𝑘) → 𝐿𝑚𝑎𝑥 , and so the function 𝑘 𝑝𝛼 (𝑘) approaches a constant function.
Qualitatively speaking, as the induced error rate increases, 𝑃𝛼 behaves more like a random process
than the underlying ’true system’ 𝑃𝑔.

In addition to the measures for the GAP algorithm’s performance, we also have the comparisons
to the QL and MDP agents along the same error rate panel. By contrast to the 10 to 15 epoch
convergence of the GAP algorithm, the QL agents converge after 18 to 29 epochs. In addition,
the convergent solutions for the 0% to 40% error rates are 20 to 10 steps slower, though the 50%
case finds the QL agent solving the problem 6 steps quicker. Together, these illustrate that the GAP
algorithm converges more quickly, and to higher quality solutions, than the QL agent. The MDP
agent provides a baseline for performance, with the GAP agent consistently identifying solutions
within 30% of the MDP-identified optima, highlighting that efficacious learning is occurring.

798

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

Figure 10: Plot of 𝑘𝑝𝛼

𝑘𝑝
ratio for the learning curves of the GAP algorithm on the STRIPS world,

along with the power law fit curve

We can use this data to confirm the predicted relationship suggested in Equations 13 and 16. Taking
𝑘 𝑝 to be the convergent performance of the 0% error case (based on the theoretical minimum case
of 17 steps), we examine the ratio of 𝑘 𝑝𝛼 at multiple error levels to this baseline 𝑘 𝑝. Plotting

𝑘𝑝𝛼

𝑘𝑝
in Figure 10, we find a high correlation exponential fit, validating the predicted relationship.

3.3 Maze/TAXI Domain

The TAXI and Maze problems are canonical study cases for machine learning systems. In the
TAXI problem, the agent must visit a list of locations, pick up a ’passenger’, and then deliver each
passenger to a specific destination cell, and we complicate the problem by performing the navigation
component inside a maze. Combining the two problems creates a complex hierarchical problem
of similar character to the STRIPS implementation, but with substantially larger state spaces and
far more complex learning patterns. Actions are movements between cells, and pickup and drop
off actions. Inputs to the system vary depending on the abstraction mechanisms being employed,

Table 1: Comparison of measured and predicted values for analysis, calculated from the
performance on the STRIPS problem learning curves, and comparisons to QL and MDPs

𝑃𝑡ℎ𝑟𝑒𝑠ℎ 𝑘 𝑝 I 𝑘 𝑝 II %E 𝐴𝑘−1 %OL QL 𝑘 𝑝 QL Ep. MDP 𝑘 𝑝

0% 18.53 18.10 2.30% 𝐿𝑚𝑎𝑥I 25.30 54.9 7.4% 38.5 18 17.0
5% 20.04 20.21 0.87% 𝐿𝑚𝑎𝑥II 27.29 62.1 6.8% 42.1 17 20.2
15% 22.81 22.76 2.11% %E 7.8% 53.5 14.9% 43.5 19 20.1
30% 30.15 28.14 7.12% 25.9 5.9% 49.9 21 23.8
40% 43.82 42.07 4.15% 6.2 1.7% 53.4 29 59.2
50% 65.81 57.40 14.65% 0.08 2.9% 59.4 27 68.6

799

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

but varyingly include local observations of the maze topography, relative position of the target
’passenger’, and whether a passenger is currently carried.

To engage with the goal-agnosticism of the GAP agent, we do not perform training on fixed TAXI
destinations and mazes, but rather generate a random maze for each training epoch, complete with
random target locations for ’pickup’ and ’drop off’ actions. Rather than restricting ourselves to
simple mazes without interior spaces, we have allowed for the inclusion of open space regions in
the maze. Such a maze is illustrated in FIGURE 11. Mazes with uniform width traversals are
amenable to simple navigation algorithms, indicating inherent state space simplification, which we
remove to increase problem complexity, and sensitivity of our experiments to impacts of varying
error and abstraction.

In these experiments, only local, relative states are constructed- we do not use global coordinates,
and the maze and goals are randomized every epoch, pressing the agent to learn the problem in a
more general sense. In addition to illustrating the flexibility of the GAP, we also examine properties
of learning transference and generalization. The maximal state space size is variable, however for
the maze generation parameters used averaged to |S|𝑚𝑎𝑥 = 18432.

FIGURE 12, shows the average learning curves for the Maze/TAXI problem, for error ranging from
0% to 30%, with an 𝑅2 of 0.84, greater than the STRIPS trials. A factor effecting fit quality is outlier
learning cases, with the disturbances visible on FIGURE 12 as the sharp jump over epochs 4 to 7.
These are due to randomization of the maze, where on occasion radically novel structures challenge
the agent with an expanded problem space. The narrowness of the discrepancy indicates that the
GAP algorithm is able to learn the more expansive problem after a few epochs. Further, that the
scale of the disturbance is lower than initial performance implies a measure of learning transference
occurs.

FIGURE 13, plots learning curves across induced error ranging from 5% to 30%, and the rela-
tionship between 𝑘 𝑝𝛼 and 1

𝑘 , also in FIGURE 13, to show continued adherence to predicted form.
Asymptotic 𝑘 𝑝 proportional to error rate, and correlation between initial performance and long
term performance are both present, as are further ’adaptation bumps’ between epochs 4 and 8.
The consistency of this range suggests that encountering a variant maze which causes innovative
learning tends to happen, on average, three to four epochs after the initial learning. This range varies,

Figure 11: An example of a randomly generated ill–conditioned maze used in these Maze/TAXI
problems

800

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

Figure 12: Average learning curve for the GAP algorithm operating on the complex Maze/TAXI
problem, for all tested cases.

Figure 13: Performance of the GAP algorithm across multiple levels of induced error on the
Maze/TAXI problem space and plot of 𝑘 𝑝 as a function of 1

𝑘 , and the measures of non-
linear divergence for the Maze/TAXI trials at each induced error level.

with some instances experiencing multiple small bumps, and others presenting with one substantial
spike to nearly the initial performance level, followed by an on–model return to reciprocal behavior.
However, long run trials (extending to 100 epochs) showed that the average case over each error
level achieved asymptotic performance by 9 epochs, with no statistical outlier cases of occurring
after 17 epochs across 1000 instances of training.

We also investigate the impact of abstractions on the GAP algorithm, using 𝐿𝑚𝑎𝑥 for a group of
abstractions used in combination. Three different kinds of abstractions are selected: AI constructs
a vector representing the 8 neighborhood cells to the agent’s current cell; AII is similar to AI, but
includes only the 4 cells above, below, and to the sides of the current cell; and wA, or ’with Action’,
adds the additional information of the most recent action the agent has taken to the full state vector,
inspired by the colloquial ’right hand rule’ for naive maze navigation. These produce four different
state generation methods: ’AI wA’, using AI and wA together, ’AII wA’, and AI and AII both
without wA (nominally ’AI w/oA’ and ’AII w/oA’). By composing the abstractions, we can compare
the relative impact of each in accordance with the form of Equation 14.

801

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

On TABLE 2, the measured and predicted 𝑘 𝑝 for each joint abstraction are listed, with the average
percent error. ’AI wA’, ’AII wA’, and ’AII w/oA’ have relatively low errors at 4-8%, with ’AI w/oA’
being an outlier at 14.5% error and 𝑘 𝑝 substantially higher than the other cases. TABLE 3 presents
the values for 𝐿𝑚𝑎𝑥 , and reciprocal fit characteristics. We find that the pairs of values are within the
scale of correspondence observed as typical for the GAP algorithm thus far, and on the appropriate
scale for the performance values observed in TABLE 2.

TABLE 3 also presents the comparison parameters for the QL and MDP learning instances. For
both ’wA’ cases and the ’AII w/oA’, the MDP algorithm finds solutions in the 20-30 step range, and
the GAP algorithm solutions occupying the same range. However, in the outlier case, ’AI w/oA’,
the average GAP algorithm performs 33% less effectively than the MDP system. The error between
𝑘 𝑝 is twice that of the next greatest discrepancy, and both 𝐿𝑚𝑎𝑥 measures are greater than either-
suggesting that the variance is much higher than for the other cases. In both the ’AII wA’ and ’AI
w/oA’ cases, the QL agents fail to converge within the time limit. In the cases where the QL agent
does converge, it takes about 15 times longer, and the identified solutions are 4.2 to 5.8 times less
efficient than GAP.

FIGURE 14 illustrates the linearized performance curves across the four joint abstractions, with
their off–linear errors, of which all are less than 10%. We can also observe the sharp chance in
performance, the 13-fold reduction in performance for ’AI w/oA’ highlighting the sensitivity in
Equation 16.

These performance changes can be examined empirically: 𝑃𝛼 can be constructed as a product of
transform arrays, with effects determined via Equation 14, thus fit functions for 𝑘 𝑝𝛼 as a function
of 𝑙𝑜𝑔(1 − 𝑃𝑡ℎ𝑟𝑒𝑠ℎ) can estimate | |𝛼+𝑇𝑠 | |1 · | |𝑇𝛼𝑘 | |1 · | |𝛼𝑇𝑠 | |1. On FIGURE 15, we have plotted 𝑘 𝑝𝛼

as a function of 𝑙𝑜𝑔(1 − 𝑃𝑡ℎ𝑟𝑒𝑠ℎ), to establish that Equation 14 has the correct linear form for this
analysis. Using the linear fit for these curves, we derive the values in TABLE 4: estimated L1 norms
(denoted |𝛼+𝑇𝛼 | for compactness) at each error level. We see narrow statistical variance, expected
given that the abstraction matrices are constant.

Table 2: Predicted 𝑘 𝑝𝛼 versus measured 𝑘 𝑝 across error and abstraction for Maze/TAXI

𝑃𝑇ℎ𝑟𝑒𝑠ℎ AI wA AII wA AI w/oA AII w/oA
1% Meas: 30.19 23.40 396.17 38.00

Pred: 28.27 22.42 452.29 37.19
5% Meas: 54.16 24.58 272.13 30.88

Pred: 54.71 24.86 231.61 29.66
10% Meas: 52.49 31.72 285.07 37.76

Pred: 53.39 31.69 234.67 39.68
15% Meas: 67.30 35.43 418.00 35.83

Pred: 71.19 37.33 492.38 40.62
20% Meas: 42.12 31.66 729.29 36.64

Pred: 40.83 34.89 788.94 39.97
25% Meas: 58.45 29.70 464.91 51.31

Pred: 54.78 30.39 399.60 58.65
Avg. %E: 4.03% 3.88% 14.45% 7.98%

802

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

Table 3: Comparison of measured and predicted 𝐿𝑚𝑎𝑥 across abstractions for the complex
Maze/TAXI domain with joint abstractions, along with QL and MDP performance
baselines.

𝑘 𝑝I 𝑘 𝑝II %E 𝐴𝑘−1 %OL 𝐿𝑚𝑎𝑥I 𝐿𝑚𝑎𝑥II %E QL 𝑘 𝑝 QL Ep. MDP 𝑘 𝑝

AI wA 30.2 28.3 6.7% 69.9 9.2% 61.7 69.1 10.6% 127.3 265 30.4
AII wA 23.4 22.4 4.5% 8.1 6.3% 32.2 36.8 12.5% NC NC 23.5
AI w/oA 396.0 452 12.4% 505 7.2% 527.1 573.1 8.0% NC NC 297
AII w/oA 38.0 37.2 2.2% 24.9 8.4% 40.4 43.8 8.3% 221.4 269 33.5

The similarity of the L1 norms indicate successful estimation of this parameter, but for the full
mapping which may contain other factors aside from the abstractions (such as implicit bias). How-
ever, because we created joint abstractions from composition, we estimate the impact across paired
subsets via ratios of the pairs’ measures, relying on the submultiplicity of the L1 norm. On TABLE
5, these ratios are listed, with each variant transition presenting similar scale changes. To judge the
scale of these deviations, we can combine the two transitions which transfer ’AI wA’ to ’AII w/oA’
and compare these to the actual proportional difference between ’AI wA’ and ’AII w/oA’. Doing
so, we find the estimates to be 0.958 and 0.791; respectively 10% and 9% off of the actual ratio of
0.871 confirming the analysis in Section 2.3.6.

3.4 Tower of Hanoi Domain

The Tower of Hanoi puzzle is a perennial favorite for mathematical analysis. The puzzle consists
of a number of disks stacked on three or more pegs, labeled by an ordinal index which must be
preserved when disks are transferred between pegs.

Figure 14: Linearized plot of the learning curves for theMaze/TAXI learning under abstraction with
corresponding measures of off–linear performance for each of the four combinations of
abstractions implemented

803

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

Figure 15: Convergent behavior of the four abstractions as a function of 𝑙𝑜𝑔(1−𝑃𝑡ℎ𝑟𝑒𝑠ℎ), as in Eq.
14, along with the percent off–linear deviations for each curve, corroborating the use of
Equation 14 as a proxy for calculating the remaining components of |𝛼+𝑇𝛼 |

Table 4: Measured 𝑘 𝑝𝛼 and corresponding |𝛼+𝑇𝛼 | estimates

AI AII
𝑃𝑇ℎ𝑟𝑒𝑠ℎ 𝑘 𝑝𝛼 |𝛼+𝑇𝛼 | 𝑘 𝑝𝛼 |𝛼+𝑇𝛼 |
1% 30.19 1.05 23.40 1.15
5% 54.16 1.09 24.58 1.11
10% 52.49 1.06 31.72 1.21
15% 67.30 1.57 35.43 1.77
20% 42.12 1.02 31.66 1.14
25% 58.45 1.05 29.70 1.08
wA 1.144 (±12.5%) 1.249 (±14.1%)
1% 396.17 1.01 38.00 0.99
5% 272.13 1.00 30.88 0.99
10% 285.07 1.00 37.76 1.00
15% 418.00 1.01 35.83 0.99
20% 729.29 0.99 36.64 1.00
25% 464.91 1.01 51.31 0.00
w/oA 1.004 (±0.3%) 0.996 (±0.2%)

Figure 16: Illustration of a traditional Tower of Hanoi (ToH) problem: the objective is to move all
disks from the first peg to the third, by only moving disks between pegs, and under the
constraint that a disk may only be moved on top of a larger disk or to an empty peg. This
graphic shows the 3-peg, 4-disk, variant of the problem, 𝑇𝑜𝐻3,4

804

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

Table 5: Calculated |𝛼+𝛼 | ratios across abstractions and predicted transform measure, derived from
the entries in TABLE 6 and Equation 14

Q(𝛼) AI AII 𝐼 → 𝐼 𝐼 AIwA→AIIw/oA
wA 1.144 1.249 1.091 Meas: 0.871
w/oA 1.004 0.996 0.992 Pred 1: 0.958 (+10%)

wA→ w/oA 0.877 0.798 Pred 2: 0.791 (-9%)

The canonical implementation has 3 pegs, and 3 to 7 disks, but both can be changed. Problems
are represented as 𝑇𝑜𝐻𝑝,𝑑 , where 𝑝 is the number of pegs, and 𝑑 is the number of disks. As a
well-defined problem, with the mathematics of the 3-peg case being particularly well studied, the
Tower of Hanoi presents opportunities for direct performance comparisons, with greater numbers
of pegs presenting wider state spaces with lower net complexity, and increased numbers of disks
representing increases in complexity. The scope of the state space is |S|𝑚𝑎𝑥 = 𝑝𝑑 , and the action
space |A|𝑚𝑎𝑥 = 𝑝2, though only a small subset is reachable, and graph complexity is lower than
the upper bound.

FIGURE 17 plots the average learning curves for 𝑇𝑜𝐻3,3, 𝑇𝑜𝐻3,5, and 𝑇𝑜𝐻4,5 over error rates
ranging from 0% to 25%, and the reciprocal best fit curves for each. As with the prior two domains,
we see close fit to the reciprocal form. TABLE 7 presents the results from these tests in tabular
format. Here, we can see steady deviations from the near optimal performance of the 𝑇𝑜𝐻3,3 and
𝑇𝑜𝐻3,5 cases as error level increases.

We also include the QL and MDP performance levels on TABLE 7, across each version and error
level. As with the prior experiments, we observe the QL agents converging at much slower rates, up
to and including non-convergent learning which increases in frequency as the problem complexity
class and error rates increase (a phenomenon we explore in more detail shortly). Additionally, we
can confirm continued efficacy of the produced solutions, with the GAP plans approaching the

Figure 17: Average learning curves for the GAP algorithm over the three investigated ToH domains,
𝑇𝑜𝐻3,3, 𝑇𝑜𝐻3,5, and 𝑇𝑜𝐻4,5 at varying error levels, along with reciprocal fit curves

805

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

Table 6: Chart of the correlation measures for the GAP Algorithm learning the Tower of Hanoi
problem, across error level and problem complexity class

𝑃𝑡ℎ𝑟𝑒𝑠ℎ 𝑘 𝑝I 𝑘 𝑝 𝐼 𝐼 %E 𝐴𝑘−1 %OL QL 𝑘 𝑝 QL Ep. MDP 𝑘 𝑝

5% 16.5 15.6 5.5% 110 19.3% 19.2 141 11.4
ToH(3,3) 15% 47.3 47.8 0.9% 117 7.8% 36.7 138 35.2

20% 61.9 63.4 2.4% 126 1.8% NC NC 39.9
5% 32.7 30.1 11.4% 35 5.4% 37.2 95 30.8

ToH(3,5) 15% 34.8 37.1 6.4% 144 5.8% 100.2 137 34.3
20% 44.9 48.7 8.2% 388 16.1% NC NC 51.2
5% 206.4 201.5 2.4% 1678 12.3% 287.4 135 175.4

ToH(4,5) 15% 696.7 707.5 1.6% 1336 2.3% NC NC 599.1
20% 2052.2 2006.9 3.0% 133 1.2% NC NC 1766.6

performance levels indicated in the MDP planner, rising also to a maximum 16% deviation at peak
complexity and error rate.

TABLE 7 shows that 𝑇𝑜𝐻4,5 levels deviate substantially with error, suggesting that the expanded
state space is more vulnerable to impacts of variance (a property we will interrogate further shortly).
We also present the errors associated with the reciprocal fit curves, showing generally strong fits,
excepting the outlier of the 𝑇𝑜𝐻3,3 case at 5% error. However, the low error between 𝑘 𝑝 and
𝑘 𝑝𝛼 suggests that this is likely due to rapid convergence, and indeed the 𝑇𝑜𝐻3,3 case converges at
approximately 5 epochs rather than the 20 sampled. Algorithmic solutions are available from [20],
enabling comparisons to the theoretical optima. For the 3 peg cases, the optimal number of moves
is 2𝑑 − 1, giving 7 moves for 3 disks and 31 moves for 5 disks. The corresponding agents take 15
and 33 steps respectively across the full error range, with the 0% error cases naturally achieving the
optimal performance level after one epoch.

We can also use the substantial state space and restricted set of elements to we develop and imple-
ment four abstractions: AI- Direct conversion of lists of disks on each peg to a numerical state: the
sum of products of disk indices on each peg; AII- Encoding of disk placement as a list of the sums
of disk indices on each peg; AIII- Listing pairs of the number of disks currently stacked on each peg
and the index of the topmost disk; AIV- Listing the number of disks on each peg. Each produces
incrementally compressed state spaces.

TABLE 7 presents the measurements for the battery of experiments on all four abstractions across
error rates from 0 to 20%. The AIII and AIV cases for the 𝑇𝑜𝐻3,5 case unilaterally converge
to the optimal number of steps, precluding analytical estimation of 𝐿𝑚𝑎𝑥 . This is remarkable as
this convergence is not strictly seen in the simpler 𝑇𝑜𝐻3,3 case. Further, the highest performing
abstractions vary among the problem classes; for 𝑇𝑜𝐻3,3 AI and AIV perform most strongly; AIII
and AIV for 𝑇𝑜𝐻3,5; and finally AI and AII for 𝑇𝑜𝐻4,5.

TABLE 7 also lists comparison cases alongside the measurements for the GAP. As before, conver-
gent performance levels approach those for theMDP based agents, contingent on problem complex-
ity and abstraction density. The QL agent consistently fails to learn solutions for the AIII and AIV
abstractions, though the AI and AII versions perform relatively close to the GAP and MDP agents,

806

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

Table 7: 𝑘 𝑝 and 𝐿𝑚𝑎𝑥 comparisons for the GAP algorithm learning the ToH problem with various
abstractions and across complexity classes

Abst. 𝑘 𝑝I 𝑘 𝑝II %E 𝐿𝑚𝑎𝑥 𝐼 𝐿𝑚𝑎𝑥II %E QL 𝑘 𝑝 QL Ep. MDP 𝑘 𝑝

AI 16.5 15.6 5.6% 15.6 17.5 11.4% 27.2 139 17.1
𝑇𝑜𝐻3,3 AII 27.8 31.5 13.5% 8.1 8.8 7.3% 37.1 123 26.9

AIII 21.6 17.3 20.2% 17.22 14.8 16.3% N/A N/A 20.0
AIV 17.0 15.3 9.7% 31.5 35.1 10.3% N/A N/A 12.9
AI 35.3 34.2 3.1% 62.1 59.4 4.7% 41.8 115 32.6

𝑇𝑜𝐻3,5 AII 31.4 35.1 11.8% 64.9 69.0 5.9% 36.1 163 37.5
AIII 31.0 31.0 0% 31 31 0% N/A N/A 31.8
AIV 31.0 31.0 0% 31 31 0% N/A N/A 31.1
AI 254.5 256.9 0.9% 112.06 104.5 6.8% 226.9 72 162.9

𝑇𝑜𝐻4,5 AII 278.1 241.3 13.2% 101.9 112.6 10.5% 4068 43 273.6
AIII 1267.2 1354.6 6.9% 391.9 371.5 5.2% N/A N/A 1076
AIV 2017.7 1843.2 8.6% 719.9 749.8 4.1% N/A N/A 1899

albeit taking 11 to 16 times more epochs to converge. In the 𝑇𝑜𝐻4,5 QL experiments, convergence
times are approximately a half of those for the other problems, and the AI solution is marginally
superior to the GAP algorthim, but for the AII case, a relatively brief 43 epoch converges to a
solution 14 times less efficient than the GAP and MDP solutions. Additionally, on TABLE 8 are
presented the metrics for the reciprocal fit of each trial set, curves matching the predicted form with
errors on the order of 2-8%.

There is a telling comparison in the 𝑇𝑜𝐻4,5 cases for AIII and AIV, the convergent 𝑘 𝑝 are sub-
stantially larger than those for the AI and AII. Further, the average, no–abstraction 𝑇𝑜𝐻4,5 curve
converges at 𝑘 𝑝 = 56, indicating the GAP can learn this problem. Because the trials on 𝑇𝑜𝐻4,5
perform substantially worse than the non-abstracted case, and other classes perform similarly, we
hypothesize unsuitability of the AI-AIVmodels to represent the𝑇𝑜𝐻4,5 problem space, specifically.
Considering AI, increasing the number of pegs, the number of abstracted states remains nearly
constant, yet real states increase exponentially. We can consider this ratio of abstracted to real
states as a metric component which puts an upper bound𝑄(𝛼𝑇). Similar complications thus exist at
even more substantial levels for the other abstractions, with more severe impacts due to the greater
reduction in the size of the abstracted state space.

Table 8: Curve fit metrics for 𝑘 𝑝𝛼 = 𝐴
𝑘 + 𝑘 𝑝 in the ToH trials, across Abstractions I-IV, with %

off–linear measures for each best fit line.

AI AII AII AIV
𝐴𝑘−1 % OL 𝐴𝑘−1 % OL 𝐴𝑘−1 % OL 𝐴𝑘−1 % OL

𝑇𝑜𝐻3,3 130.9 4.1% 84.9 6.1% 116.9 8.0% 131.6 6.7%
𝑇𝑜𝐻3,5 144.1 1.6% 195.6 3.1% N/A -% N/A -%
𝑇𝑜𝐻4,5 721.5 8.2% 439.7 6.5% 3886.6 7.5% 989.4 1.6%

807

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

Figure 18: Plots of the linearized GAP learning curves for the 𝑇𝑜𝐻3,3 (left) and 𝑇𝑜𝐻4,5 (right)
problems acrossmultiple levels of induced error and associated off–linear errormeasures

This effect can be examined using error as a proxy for performance reduction. In FIGURE 18 (left)
are linearized curves for 𝑇𝑜𝐻3,3 on error rates 5, 15, and 20%. The 𝑘 𝑝 congregate around the 5%
and 15% error levels, and with a ratio of 3.8x between the 20% and 5% 𝑘 𝑝. In FIGURE 18 (right), by
contrast, are the error impacts on the𝑇𝑜𝐻4,5 case, where there is a substantially higher susceptibility
to error, with proportional change between 5% and 20% being a factor of 10x, and the AI and AII
cases, with 𝑘 𝑝 around 260, are near to the 5% error level, with the AIV case approaching the 20%
error level. This shows how relative size of an abstracted state space can impact performance, with
similar results to changing error level, implying a direct relationship between the ratio of sizes of the
native and abstracted state spaces that has a substantial limiting impact on the overall performance
of the GAP algorithm [4].

Combined with validation of the composition model in Section 3.3, we have a learning system
in which each element obscuring a problem- perturbations, error, abstractions, and inaccuracy,
can be modeled as probabilistic transforms for which an information budget is present, and the
quality of the resulting solutions is a result of the total cost of those impediments, as indicated in
Equation 15, . This allows the GAP agent to address one of the principle limitations discussed by
symmetry breaking- in a grounded way, tying similarities between performance under uncertainty
and abstraction together.

4. CONCLUSIONS AND FUTUREWORK

In this paper, we presented a hypergraph–based learning and planning algorithm, the Goal Agnostic
Planner, designed for solving hierarchical planning problems without the need to construct a reward
function or world model and the capacity to plan between any pair of states. This algorithm uses
a 3-dimensional array modeling a hypergraph data structure, augmented by two 2-dimensional
composite data structures comprised of arrays containing ordered linked lists. These data structures
retain information observed information for planning. We claimed that this structure and the asso-
ciated algorithms possessed several benefits as a joint system: optimal solutions, exponential goal

808

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

convergence and bounded failure rates, tolerant of abstracted and uncertain model perturbations,
and follows a reciprocal learning curve.

Planning uses 2-dimensional slices of the hypergraph, a space complexity bounded by 𝑂 (𝑛3). We
proved that these slices contained the path with the greatest joint probability between any pair of
states embedded in the hypergraph. We also developed, to accompany this data structure, an in–
situ maintenance algorithm operating in 𝑂 (1), a sequence inference algorithm based on Dijkstra’s
algorithm, and proved that this algorithm extracts the greatest probability path in the hypergraph
between any pair of states in 𝑂 (𝑛2) via the maximal probability subgraph. This information was
used to construct a dynamic performance model from the predetermined policy from the planning
algorithm, predicting the time evolution, showing probability of goal achievement was monotonic,
describing the probability that the agent becomes unable to transition to the goal, that the conver-
gence rate is bounded above by an exponential function, and illustrating that the transition to the
terminal states is efficient.

Based on these results, we introduces a model for perturbations and abstractions, and derive the
conditions under which a path planned in those spaces will converge in the true space. We analyzed
the impact of the abstractions on system performance, and a metric for the ’quality’ thereof. A
specialized one-to-one transform model for incremental learning allowed us to show that GAP
agents will demonstrate progressive learning, and determine that learning curves for GAP agents
will, on average, follow a reciprocal trend.

To investigate the performance of the GAP algorithm on actual problem cases, we performed trials
on three problem cases in Section 3: a traditional STRIPS problems, a combined maze navigation
and the TAXI domain, and the Tower of Hanoi puzzle. In each case, we examined the performance
of the GAP algorithm during learning, demonstrating that the predicted reciprocal form of the
convergent learning curve persists throughout all experiments, and grounded the effectiveness of
GAP agains MDP and QL systems. To validate our analysis, we made proxy measurements derived
from the best fit learning curves to compare to our predictions, and applied varying levels of artificial
error in each experiment to study the impact of disturbances. Convergent behavior was shown
in the face of these factors. We also used the increased complexity and larger state spaces of
the Maze/TAXI and Tower of Hanoi problems to investigate the effects of various abstractions
on learning performance. We also used individual experiments to explore specific properties: the
STRIPS problem for the power law relationships predicted for convergent performance under vary-
ing uncertainty; the Maze/TAXI experiments, to confirm theoretical predictions about performance
under composed transforms; and the Tower of Hanoi experiments to investigate the properties of
the abstraction quality metric.

4.1 Limitations

The size of the INC array, which scales as 𝑂 (|S| × |S| × |A|), is a pragmatic limit. For instance, in
a hierarchical problem with two divisions, we can represent each subproblem space by a vector. If
each vector contains three binary members, then the total size of the state space will be 64, and thus
the state/state space will be of size 4096 elements, multiplied by however many actions are present,
highlighting the ease with which the hypergraph can become very large. One way we might look
at this is as an extension of problem (2) from [21], wherein addressing the issue of combinatorial

809

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

explosion of paths through a state space, we have shifted the computational burden from the time
domain to the space domain. Abstractions naturally provide a means to reduce the size of the INC
array, as well as compression in a stable, well-defined manner. Unlike the traditional ’curse of
dimensionality’, sparsity can be leveraged for improved performance. Additionally, alternative
methods of representing INC which can reduce the size of the array are discussed in Appendices
A.3 and A.4.

We have used a naive implementation of Dijkstra’s algorithm which has worst–case time order of
𝑂 (|S|2). While this is not especially bad, more advanced, faster path finding algorithms can be
applied to improve overall performance. The maintenance of subgraphs is independent of path–
planning, so any algorithm compatible with optimization of path costs on a graph would be viable.
In Appendix A.4, a model for integration with A* is presented as a means for adapting the GAP
algorithm to use a faster planning approach.

The algorithm has phase associated with random actions for exploration of the state space. One may
even deliberately program a phase of execution with entirely random actions to save computation
time until enough paths are known. Approaches to examining the impact of, and amelioration for,
this phenomena are discussed in Appendices A.1, A.3, and A.4. A method we explored in pilot
experiments is the use of Tabu search in the exploration phase. We implemented a policy by which
selection of actions was from only previously unused actions in each state. One very particular
address to this problem, which presents the possibility of a powerful augmentation to both learning
speed, and learning transference, is investigated in Appendix A.3- the possibility of using structural
and archetypal patterns in problems to pre-train systems which can then more quickly be tuned to
solve a more specific iteration.

4.2 Further Work

Though we developed a means to detect and quantify the risk associated with dead–ends (trap
nets and non–goal attractors), none of the problem cases in this paper contain any such networks.
Similarly, though the concept of multiple attractor states is discussed, all systems demonstrated thus
far possess singular goal states. We have explored non-deterministic action of the GAP algorithm
vis-a-vis error induction, and abstractions, but none of the problem cases presented in the set of
validation experiments above is inherently non-deterministic. A future body of work would include
these problem types.

While out of scope for the matter of this paper, it is simple to conceptualize a model in which
the goal is not expressly a singular state, or set of states, but rather a metric function of some
kind. Though this does re-introduce some issues associated with the use of bespoke objective
functions, the potential for learning cost improvements opens the possibility of process optimization.
A specific case of this would be an expected-cost formulation of the GAP algorithm, minimizing
weighted cost rather than maximizing probability- addressed in Appendix A.2.

A further complex issue is learning transference. In the randomized worlds used in the Maze/TAXI
experiments, some evidence of transferred learning was presented. However, we have analyzed
transferred performance beyond a special case of the general reciprocal curve. This condition was
alluded with the ’adaptation bumps’ observed in Maze/TAXI learning. The value of a model for

810

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

transference learning beyond this is clear from the observed consistency in the rate of appearance
of these outlier bumps.

Perhaps the most interesting direction is related to transference and the application of patterns
observable in the INC and AFI arrays of trained agents. These patterns are discussed in appendices
A.2, A.3, and A.4. Our interest is in leveraging the possibility of archetypal problem classes, and
implementing statistically derived models representing those agents, to pre-train GAP agents, and
allow for inference between joint, complex, or synthesized problems. For instance, one might
prepare a statistical model of a a problem which can be scaled (for instance the Tower of Hanoi’s
disks, or the size of a maze) and generate a baseline AFI array for an up-scaled problem. Or, more
esoterically, it may be possible to develop structural representations of how hierarchical domains are
combined, as well as representative models of the subproblems, and define a new brain by applying
those composition rules to the subproblems to generate a fitting AFI.

Another direction to investigate along these lines is the utility in identifying problems as joint
domains. Considering the Maze/TAXI domain- is it possible that one could train an agent on the
TAXI problems andMaze problems independently, develop a statistical model of each, and generate
an efficient pre-train model by combining the two? Such methods, if effective, would provide an
extraordinary amount of design power, inference potential, and learning transference value to GAP
agents. Perhaps even the use of other unsupervised learning methods on a body of pre-existing AFI
templates could be used to generate AFI arrays directly from descriptions or initial observed data.
We find these directions, while admittedly ambitious, to be worthy of ongoing investigation.

References

[1] Matignon L, Laurent GJ, Le Fort-Piat N. Reward Function and Initial Values: Better
Choices for Accelerated Goal-Directed Reinforcement Learning in International Conference
on Artificial Neural Netw.2006:840-849.

[2] Koenig S, Simmons RG. The Effect of Representation and Knowledge on Goal-Directed
Exploration With Reinforcement-Learning Algorithms Mach Learn. 1996;22:227-250.

[3] https://www.cs.kent.ac.uk/people/staff/mg483/documents/grzes17goals-in-pbrs.pdf

[4] Dimitrov NB, Morton DP. Combinatorial Design of a Stochastic Markov Decision Process
in Operations Research and Cyber-Infrastructure. Springer; 2009:167-193.

[5] Szepesvári C, Littman ML. Generalized Markov Decision Processes: Dynamic-
Programming and Reinforcement-Learning Algorithms in Proceedings of International
Conference of Machine Learning. 1996;96.

[6] Steinmetz M, Hoffmann J, Buffet O. Goal Probability Analysis in Probabilistic Planning:
Exploring and Enhancing the State of the Art. J Artif Intell Res. 2016;57:229-271.

[7] Bertsekas DP, Tsitsiklis JN. An Analysis of Stochastic Shortest Path Problems. Math Oper
Res. 1991;16: 580-595.

[8] Guillot M, Stauffer G. The Stochastic Shortest Path Problem: A Polyhedral Combinatorics
Perspective. Eur J Oper Res. 2020;285:148-158.

811

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

[9] Blum AL, Furst ML. Fast Planning Through Planning Graph Analysis. Artif Intell.
1997;90:281-300.

[10] Blum AL, Langford JC. Probabilistic Planning in the Graphplan Framework. In: Biundo,
S., Fox, M. (eds) Recent Advances in AI Planning. ECP 1999. Lecture notes in computer
science. 2000 Jan 1;1809:319-332.

[11] Hunter A, Thimm M. Probabilistic Reasoning With Abstract Argumentation Frameworks. J
Artif Intell Res. 2017;59:565-611.

[12] Leonetti M, Iocchi L, Stone P. A Synthesis of Automated Planning and Reinforcement
Learning for Efficient, Robust Decision-Making. Artif Intell. 2016;241:103-130.

[13] Hostetler J, Fern A, Dietterich T. Sample-Based Tree Search With Fixed and Adaptive State
Abstractions. J Artif Intell Res. 2017;60:717-777.

[14] Pineda L, Zilberstein S. Probabilistic Planning With Reduced Models. J Artif Intell Res.
2019;65:271-306.

[15] Konidaris G, Kaelbling LP, Lozano-Perez T. From Skills to Symbols: Learning Symbolic
Representations for Abstract High-Level Planning. J Artif Intell Res. 2018;61:215-289.

[16] Lüdtke S, SchröderM, Krüger F, Bader S, Kirste T. State-Space Abstractions for Probabilistic
Inference: A Systematic Review. J Artif Intell Res. 2018;63:789-848.

[17] Dietterich T. State abstraction in MAXQ hierarchical reinforcement learning. Advances in
Neural Information Processing Systems. 1999;12.

[18] McCallum RA. Reinforcement Learning. Adv Neural Inf Process Syst. 1995;7:377.

[19] Knoblock CA. Abstracting the tower of Hanoi in Working Notes of AAAI-90 Workshop on
Automatic Generation of Approximations and Abstractions. Citeseer. 1990: 4976: 1-11.

[20] Van Zanten AJ. The Complexity of an Optimal Algorithm for the Generalized Tower of Hanoi
Problem. Int J Comput Math. 1990;36:1-8.

[21] Jiménez S, De La Rosa T, Fernández S, Fernández F, Borrajo D. A Review of Machine
Learning for Automated Planning. Knowl Eng Rev. 2012;27:433-467.

Appendix A. GAP Algorithm Modifications

The structure of the GAP algorithm presents itself to a set of modifications which present various
advantages. We have experimented with each of these in our test cases, but none in sufficient detail
for an expansion of the prior analysis.

812

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

A.1 Implicit learning rate

The GAP algorithm does not incorporate an explicit learning rate parameter, but can be viewed as
an averaging function over the number of samples. Consider the impact of one fluke observation at
different times: say we have observed a transition nine times, such that:

∑
∀𝑘 𝐼𝑁𝐶 [𝑠𝑖 , 𝑠 𝑗 , 𝑎𝑙] = 9

and that all such observations have been precipitated with action 𝑎1. If the tenth observation is
precipitated by 𝑎2; the associated probabilities then were previously: 𝑃(𝑎1(𝑠𝑖) → 𝑠 𝑗) = 1.0 and
𝑃(𝑎2(𝑠𝑖) → 𝑠 𝑗) = 0.0 whereas after, they are: 𝑃(𝑎1(𝑠𝑖) → 𝑠 𝑗) = 0.9 and 𝑃(𝑎2(𝑠𝑖) → 𝑠 𝑗) = 0.1,
a relative shift of 10%. If the total observations, were 99 prior to the anomalous result, then the
probability shift would be only 1%.

This illustrates how learning is tied to the reciprocal function, which includes learning inertia:
early anomalous results take longer to correct. If learning is online this may bias the agent. An
alternative is training with an artificial learning rate, implemented as a fixed moving average, where
probabilities are calculated as proportions of a fixed window.

A.2 Alternative policy functions

Rather than uniformly selecting the most probable action choice, and agent may instead use a
weighted expectation of each. For instance, a local probability: 𝑃𝑠𝑖 ,𝑎𝑙 (𝑠 𝑓) = 𝑃(𝑎𝑙 |𝐴𝐹𝐼)𝑃𝑎𝑙 (𝑠𝑖)→𝑠 𝑓 ,
where 𝑃(𝑎𝑙 |𝐴𝐹𝐼) represents the probability that 𝑎𝑙 is chosen. We can write an alternative method
of hypergraph compression based around the probability of each state transition: 𝑃(𝑠𝑖 → 𝑠 𝑓) =
Σ∀𝑎𝑙𝑃(𝑎𝑙 |𝐴𝐹𝐼)𝑃𝑎𝑙 (𝑠𝑖)→𝑠 𝑓 This equation compresses the hypergraph along the action slice by cou-
pling all action results together with the 𝑃(𝑎𝑙 |𝐴𝐹𝐼) function. If we define:

𝑃(𝑎𝑙 |𝐴𝐹𝐼) =
{

1 𝑎𝑙 = argmax
𝑙

𝑃(𝑎𝑙 (𝑠𝑖) → 𝑠 𝑓)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Then the compression resolves to the maximally probable subgraph.

As an alternative, however, consider that we let

𝑃(𝑎𝑙 |𝐴𝐹𝐼) =
𝑃(𝑎𝑙 (𝑠𝑖) → 𝑠 𝑓)
Σ∀𝑎𝑙𝑃(𝑠 𝑓 |𝑠𝑖 , 𝑎𝑙)

The probability of taking action 𝑎𝑙 is proportional to the relative likelihood of 𝑎𝑙 resulting in 𝑠 𝑓
relative to other actions. Such a system will converge less aggressively, but an envelope function
using Equation A.2 would enable selection of policy to favor exploitation or exploration as an
explicit, bounded system property.

A potentially more powerful application of this concept would be to minimize the expected cost of
a sequence rather than probability. One would combine two INC arrays- one for observed costs and
one for probabilities, and compute minimizing paths by calculating the net expected cost at each
step. Such a system would require a more sophisticated sorting system for the AFI array linked-
lists, but even using an in-place 𝑂 (𝑆2) algorithm maintain the overall computational complexity of
the agent.

813

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

A.3 In situ transfer functions

One alternative to learning a full state space for a problem would be to represent 𝐴𝐹𝐼 as a transfer
function. In this paradigm, some function 𝐼 (𝑠𝑖 , 𝑎𝑙) would either produce a statistical distribution
over 𝑠 𝑓 , or 𝐼 (𝑠𝑖 , 𝑠 𝑓) a distribution over 𝑎𝑙. Such a distribution might be, for instance, a rule which
eliminates potential actions, such as a non-movement action only producing states which possess
the same physical location as 𝑠𝑖. This function would then be called during the planning stage, spec-
ifying the associated probabilities by ’generating’ entries in INC. For instance, in the Maze/TAXI
problem case, one could define a simple function describing the effect of move actions based on
the known local topology of the maze. While a manual function like this would re-introduce design
bias, automated analysis could instead be used to derive 𝐼 (·), tantamount to autonomous hierarchical
decomposition via identification of an abstraction transform.

A concept discussed in the paper’s conclusion is the use of extant models for AFI arrays, combined
under principles derived from the analysis of joint and hierarchical problems, to generate pre-
training AFI for GAP agents based on topical observations or analysis of novel domains. Use of
weights or compositions could provide a mechanism for emulating generalized transfer functions
for GAP agents to plan on. These potentialities all descend directly from the transfer function-like
abstraction modeling described in sections 4.3 and 4.4 and validated throughout the main paper.

A.4 Generalized Heuristics and statistical models of AFI

Previously, mention was made of alternative planning algorithms for use within the Algorithm 2,
such as A*. Defining generalized heuristics based on the structure of GAP, instead of a specific
problem, is possible. We can illustrate this with an example, since states were assigned hashed
numerical labels in the order of discovery of the state. Under random exploration, a structural
relationship appears in AFI: adjacent states are most likely to be determined within relatively short
time periods, so transition probabilities are clustered around the primary diagonal. FIGURE 19
demonstrates this exact phenomenon for one of the𝑇𝑜𝐻3,5 agents and one of theMaze/TAXI agents.

Figure 19: Visual representation of example AFI arrays for learning on the 𝑇𝑜𝐻3,5 problem (left),
and the Maze/TAXI problem (right) showing the relationship between structure in the
AFI array and state discovery order

814

https://www.oajaiml.com/ | March-2023 Christopher Robinson and Joshua Lancaster

Based on this observation, say we build a rough statistical model, with a Gaussian distribution
𝑠𝑖 = 𝑠 𝑓 , variance decearsing linearly from 𝑣1 (measured empirically) as 𝑠𝑖 → |S|. Use geometric
inference to construct:

𝑃𝑒 (𝑠𝑖 , 𝑠 𝑓) ≈
1

𝑣1
√

2𝜋
· 2|S|

2|S| − (𝑠 𝑓 + 𝑠𝑖)
· 𝑒
−1
𝑣1
·
(
|S| (𝑠 𝑓 −𝑠𝑖)

2|S|−(𝑠 𝑓 +𝑠𝑖)

)2

extrapolating probabilities for indirect transitions. With starting state being 𝑠0, we can write an
heuristic function ℎ(𝑠𝑖) as ℎ(𝑠𝑖) = 𝑃𝑒 (𝑠𝑖 , 𝑠𝑔),

𝑓 (𝑠𝑖) = 𝑃𝑒 (𝑠𝑖 , 𝑠𝑔) ·
∏
∀ 𝑗∈𝜎0,𝑖

𝑃(𝑠 𝑗 → 𝑠 𝑗+1)

which would fit the bill for A*.

Not all problems will necessarily allow for this exact formulation, but it illustrates how a statistical
model of AFI may be created and applied. It is also entirely possible to conceptualize a similar
process of identifying a distribution over AFI to represent a problem archetype. This approach
may provide a design mechanism to analytically reduce the state space size without introducing
substantial compression loss, or with probabilistically bounded loss rates.

The presence of this representative structure is what inspires the previously discussed research tracks
based around analyzing AFI arrays for the purposes of pre-training, inference, and synthesis. It
may be possible to use derived models, such as the example above, as input to machine learning
techniques to turn feature spaces for problems into AFI arrays, analysis of partially learned spaces
for training acceleration, archetypal models for adaptive systems, and classification of problems by
weighted decomposition of learned AFI. Moreover, it may be possible to use them as a knowledge
base for descriptive and generative typologies which allow for knowledge transference, re-use, and
synthesis in novel problems. All these methods would provide unique power for the GAP algorithm
to be an effective agent for problem solving which requires quick learning, effective solutions, and
the capacity to adapt and infer.

815

	INTRODUCTION
	Related Work
	Contribution

	THE GAP ALGORITHM
	Definitions
	Datastructures & Algorithms
	Analysis of the GAP Algorithm
	Optimality of GAP plans
	Predictive behavior analysis
	Trap nets
	Derivation of bounded time performance
	Analysis of robustness under perturbation
	Impact of perturbed state on performance
	Learning convergence
	Derivation of learning curve form

	DEMONSTRATION CASES
	Experimental procedures
	STRIPS-type Problems
	Maze/TAXI Domain
	Tower of Hanoi Domain

	CONCLUSIONS AND FUTURE WORK
	Limitations
	Further Work

	GAP Algorithm Modifications
	Implicit learning rate
	Alternative policy functions
	In situ transfer functions
	Generalized Heuristics and statistical models of AFI

