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Abstract
The effect of bias on hypothesis formation is characterized for an automated data-driven
projection pursuit neural network to extract and select features for binary classification of
data streams. This intelligent exploratory process partitions a complete vector state space
into disjoint subspaces to create working hypotheses quantified by similarities and differ-
ences observed between two groups of labeled data streams. Data streams are typically time
sequenced, and may exhibit complex spatio-temporal patterns. For example, given atomic
trajectories frommolecular dynamics simulation, the machine’s task is to quantify dynamical
mechanisms that promote function by comparing protein mutants, some known to function
while others are nonfunctional. Utilizing synthetic two-dimensional molecules that mimic
the dynamics of functional and nonfunctional proteins, biases are identified and controlled
in both the machine learning model and selected training data under different contexts. The
refinement of a working hypothesis converges to a statistically robust multivariate perception
of the data based on a context-dependent perspective. Including diverse perspectives during
data exploration enhances interpretability of the multivariate characterization of similarities
and differences.

Keywords: Biased hypothesis formation, Multivariate discriminant analysis, Supervised
projection pursuit, Competitive learning, Interpretable perception, Molecular functional dy-
namics, Machine learning.
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1. INTRODUCTION

As machine learning (ML) becomes an integral part of human life, recent concerns about biases in
ML predictions have arisen [1, 2]. Analogous to self-directed category learning by humans [3],
biases affect hypothesis formation during data exploration using modulated perspectives within
a neural network (NN). Generally, NN models yield non-unique optimal perceptron weights [4];
furthermore, these weights depend on implementation details [5, 6] that contribute to biases. Un-
fortunately, results from a NN are often difficult to interpret; by extension, the underlying biases are
difficult to characterize. In contrast, biases can be effectively controlled with an objective function
within projection pursuit (PP) during the exploration of high-dimensional data [7-15]. Moreover, PP
is robust against statistical estimation errors [16], and perception is interpretable by linear projection
operators that govern dimension reduction.

A new intelligent ML paradigm known as supervised projective learning with orthogonal com-
pleteness (SPLOC) is employed here. As an automated PP framework optimized by a recurrent
NN, SPLOC performs a data-driven process for binary discriminant analysis of data streams. For
example, molecular dynamics simulations containing dozens of molecules, each involving thou-
sands of degrees of freedom (df) comprising tens of thousands sampled conformations, are feasible
to simultaneously analyze. Previously, SPLOC was shown to successfully classify the classical
iris and wine data sets and identify latent signals embedded within a noisy environment while
mitigating false identification of noise as signal [15]. The discriminate subspace could accurately
reconstruct the latent signal without over-fitting to noise. When applied to the intricate problem of
identifying functional dynamics hidden within the atomic trajectories of beta lactamase enzymes,
each involving 789 df, SPLOC was able to pinpoint key features of atomic motions. Regarded as
a working hypothesis, these identified collective motions are learned as being critical for specific
mutants to function. Furthermore, an iterative learning process for discovery of new molecules was
introduced, which is a self-directed learning process that involves the formation and refinement of a
working hypothesis as new data is presented to the machine. This past work motivates the question
of how biases alter the discovery process, such as preset perspectives that amount to weighting
certain information as more or less important during data exploration.

The work here utilizes a synthetic dataset to highlight the underlying effects of biases in perceptrons
which can be controlled by modifying the functional form of the data-driven adaptive rectifying
functions used in SPLOC. The machine perception is expressed by the coordinate system that the
data is represented in as a complete basis set that spans the state space. Through the use of projection
pursuit, biases manifest during the partitioning of an orthonormal basis. With implementation
details published previously [15], only the salient components of SPLOC relevant to this study
are highlighted. Particular emphasis is placed on the importance of bias in relation to data-driven
hypothesis refinement, including bias from preconceived perspectives.

2. METHODS

2.1 Data

The previously generated synthetic dataset of 24 two-dimensional molecules is reused for illustra-
tion [15]. This dataset contains challenging spatio-temporal patterns to identify, yet it is simple
enough for the results of the analysis to be clear and certain. Each molecule contains 𝑁𝑎 = 29
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atoms, resulting in 𝑝 = 58 df. All trajectories are comprised of 20000 conformations. Each of these
trajectories is divided in half, spawning two data streams, each having 10000 observations that yield
172.41 observations per variable. The molecules differ due to subtle embedded atomic interactions
that create certain geometrical signatures. The nomenclature for each molecule is expressed as 𝑎𝑏𝑐
to reference geometrical signatures within each domain, as depicted in FIGURE 1.

When no underlying pattern over time exists within a given domain, this is annotated by F (free).
The free conformation is the initial default for all molecular dynamics. The available geometrical
signatures for each domain are: Domain 1: E (extended); Domain 2: L (linear), S (square), T
(triangular); Domain 3: L (linear), T (triangular). The partial permutations results in 24 molecules
exhibiting distinct dynamics.

Figure 1: (a) A synthetic molecule with atom labels. (b) Two partitions separate three domains
labeled as 1, 2, 3. In each domain, the atoms can remain free or a subset of atoms
can interact, forming geometrical signatures. The possible geometrical variants of each
domain are shown in the far-right column.

In this study, the set of 24 molecules is divided into two classes. The functional class includes the
four molecules EFL, ELL, ETL and ESL, which are of the type E𝑏L where 𝑏 can be F, L, T or S.
These functional molecules are constrained to be in the extended (E) geometry in the first domain
and have a linear (L) geometry in the third domain. There are no restrictions on the type of geometry
that can be explored in the second domain. This designation mimics an allosteric interaction, in
which ligand binding at one location, modeled as additional interactions shared among a subset of
atoms, may impact the motions and ligand binding affinity at a distant location on the molecule.
Among the 20 remaining nonfunctional molecules, three subgroups of the form F𝑏F, 𝑎𝑏F and F𝑏𝑐
are considered, respectively having 4, 8 and 12 molecules. Different scenarios of training compare
4 functional molecules of type E𝑏L against the 4, 8, 12 molecule subgroups and all remaining 20
molecules.

For each training scenario the goal is for SPLOC to learn the particular structural motif which
differentiates the functional from nonfunctional molecules. In this work, SPLOC is run with five
perspectives: −2, 0−, 0, 0+, and +2to explore the impact that bias has on the relevance of information
that is explored while forming a hypothesis . Moreover, SPLOCwas run 100 times for each training
scenario/bias combination to characterize the variations in the solutions that SPLOC produces. The
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hypothesis SPLOC builds takes the form of a complete basis vector set in which the data can be
represented to highlight similarities and differences. This ortho normal basis is learned through data
exploration, where the hypothesis partitions the high dimensional data into discriminant features
described by a subset of the basis vectors that span the discriminant subspace, and indifferent
features described by a subset of basis vectors that span the indifferent subspace.

Data streams are input to SPLOC as separate ensembles, each defining a data packet. A data packet is
constructed frommdistinct p dimensional observations of a system. For the synthetic data employed
here, a single data sample is a conformation of a molecule in a simulation, represented by the state
vector ®𝑥(𝑡) = [𝑥1, ..𝑥𝑁𝑎 , 𝑦1, .., 𝑦𝑁𝑎 ]. A data stream is an ensemble of conformations that sample
the dynamics of the system, 𝑋={®𝑥(0),®𝑥(1),®𝑥(2), ..,®𝑥(𝑚)}, as a series of frames or snapshots. A data
packet is labeled functional or non-functional depending on whether it contains the geometrical
signature of interest.

2.2 Projection Pursuit Machine Learning

Data packets with 𝑝 df are described by a complete orthonormal basis set, where each basis vector
(a.k.a. mode) defines a projection direction. Starting from either the natural data basis, a basis
constructed from PCA, or any complete set of orthogonal vectors, SPLOC optimizes the complete
basis in 𝑝-dimensional space to elucidate similarities and differences between datapackets. In this
work the starting basis for SPLOC was chosen to be constructed from PCA. For 𝑝 modes, a 2𝑝
dimensional feature space can be constructed from the emergent properties of the system. These
properties are the mean, 𝜇(𝑚), and standard deviation, 𝜎(𝑚), of the projections of each data packet
along each of the basis vectors. SPLOC attempts to cluster the data in each two dimensional cross
section of this feature space representing the 𝜇(𝑚) and 𝜎(𝑚) of a particular mode 𝑚. This cross
section is called a mode feature space plane (MFSP) and is an essential component of the objective
function used in SPLOC that is maximized.

The objective function is net efficacy (E), which is linearly separable as the sum over the efficacy
of each mode, 𝐸 (𝑚). Based on the consensus of emergent properties over all pairs of data streams,
each mode is evaluated for (1) selection power, 𝑆(𝑚), that quantifies signal-to-noise; (2) consensus
power, 𝐶 (𝑚), that quantifies statistical significance, and (3) quality of clustering within a MFSP.
The conditional selection power, 𝑆(𝑚 |𝛼, 𝛽), associated with two data packets, 𝛼 and 𝛽 respectively
representing functional and nonfunctional classes, is calculated for mode 𝑚 using the formula:

𝑆(𝑚 |𝛼, 𝛽) =


√
𝑠𝑛𝑟 (𝑚, 𝛼, 𝛽)2 + 𝑟𝑒𝑥(𝑚, 𝛼, 𝛽)2 + 1 if < Si√
𝑠𝑏𝑟 (𝑚, 𝛼, 𝛽)2 + 𝑟𝑒𝑥(𝑚, 𝛼, 𝛽)2 + 1 if > Sd

𝑆𝑜 otherwise

(1)

where 𝑠𝑛𝑟 is the signal-to-noise-ratio given by 𝑠𝑛𝑟 (𝑚, 𝛼, 𝛽) = |𝜇(𝑚 |𝛼) − 𝜇(𝑚 |𝛽) |/√
𝜎(𝑚 |𝛼)2 + 𝜎(𝑚 |𝛽)2; 𝑠𝑏𝑟 is the signal-beyond-noise defined by 𝑠𝑏𝑟 (𝑚, 𝛼, 𝛽) = max

[0, 𝑠𝑛𝑟 (𝑚, 𝛼, 𝛽) − 1], and 𝑟𝑒𝑥 is the excess ratio of standard deviations defined as 𝑟𝑒𝑥(𝑚, 𝛼, 𝛽) =
max

[ 𝜎 (𝑚 |𝛼)
𝜎 (𝑚 |𝛽) ,

𝜎 (𝑚 |𝛽)
𝜎 (𝑚 |𝛼)

]
−1. The values of 𝑆𝑖 and 𝑆𝑑 are respectively 1.3 and 2.0 for the upper thresh-

old for indifference and the lower threshold for discrimination, and 𝑆𝑜= 1.6125 as their geometrical
mean given as 𝑆𝑜=

√
𝑆𝑖𝑆𝑑 .
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Figure 2: Functional forms for the rectifying adaptive nonlinear units under different biasing cases
(columns) and intensity of MFSP clustering quality (rows). The light gray vertical line
marks the reference score, 𝑆𝑜. Red and blue solid lines track the 𝑟𝑑 and 𝑟𝑖 functions, while
dash lines indicate reverse biasing.

The collection of results for emergent properties of the data streams obtained for a specific mode,
𝑚, must be statistically consistent across all data stream pairs. The consensus measure 𝐶 (𝑚)
quantifies this consistency level using modified logistic functions as explained in REF [15]. If
different data stream pairs between functional and nonfunctional classes cannot reach a statistically
significant consensus on whether there exists a difference or similarity between the two classes,
then the information associated with that mode is set as undetermined. In addition, within-class
consistency between data streams is sought after as a geometrical property within each MFSP,
but this desired characteristic of data spread is not reflected in the 𝐶 (𝑚) measure. To reduce
uncertainties in statistical estimates, various sampling methods can be applied when collecting data
streams to increase the number of data packets to compare.

Letting 𝑥= log[𝑆(𝑚)/𝑆𝑜], the efficacy per mode is given by:

𝐸 (𝑚) =
{
𝑄𝑑 (𝑚) × 𝑟𝑑 (𝑥) if S(m) ≥ So
𝑄𝑖 (𝑚) × 𝑟𝑖 (𝑥) if S(m) < So

(2)

where 𝑄𝑑 (𝑚) and 𝑄𝑖 (𝑚) are geometrical clustering quality factors associated with the MFSP [15].
For this work, it is only important to note that when data packets separate well across a decision
boundary within the MFSP, 𝑄𝑑>0 while 𝑄𝑖<0. Alternatively, when the functional and nonfunc-
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tional points in the MFSP mix well, then 𝑄𝑑<0 while 𝑄𝑖>0. These quality factors quantify how
well the emergent properties spatially cluster within a MFSP, and they are completely data-driven
based on observation. Furthermore, the functions 𝑟𝑑 (𝑥) and 𝑟𝑖 (𝑥) control the biasing, and these
functions are visualized in FIGURE 2.

The algorithm for learning an orthogonal basis set in SPLOC is presented for completeness in
Algorithm 1.

Algorithm 1: SPLOC 

𝐑𝐞𝐬𝐮𝐥𝐭: 𝑠𝑝𝑙𝑜𝑐𝑅𝑒𝑠𝑢𝑙𝑡𝑠 = 𝑠𝑝𝑙𝑜𝑐(𝑈, 𝑡𝑟𝑎𝑖𝑡𝑠𝐹, 𝑡𝑟𝑎𝑖𝑡𝑠𝑁) 

𝐢𝐟 𝑈 = 0 𝐭𝐡𝐞𝐧 

𝑈 ← setInitialBasis(𝑡𝑟𝑎𝑖𝑡𝑠𝐹, 𝑡𝑟𝑎𝑖𝑡𝑠𝑁) 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← getBasisSpectrum(𝑈, 𝑡𝑟𝑎𝑖𝑡𝑠𝐹, 𝑡𝑟𝑎𝑖𝑡𝑠𝑁) 

𝑚𝑜𝑑𝑒𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 ← none 

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← false 

𝐰𝐡𝐢𝐥𝐞 𝒏𝒐𝒕 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 𝐝𝐨 

𝑈 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑠𝑢𝑙𝑡𝑠. 𝑏𝑎𝑠𝑖𝑠𝑉𝑒𝑐𝑡𝑜𝑟𝑠 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐸 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑠𝑢𝑙𝑡𝑠. 𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦 

𝐬𝐞𝐭 adaptive learning parameters 

𝐜𝐨𝐦𝐩𝐮𝐭𝐞 Cayley rotations in undetermined space 

𝑗1 ← firstMode(𝑚𝑜𝑑𝑒𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠) 

𝑗2𝐿𝑖𝑠𝑡 ← remaining modes excluding 𝑗1 

𝑟𝑜𝑡𝑎𝑡𝑒𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ← getPairSelectionProbMatrix() 

𝐟𝐨𝐫 𝑗2 𝑖𝑛 𝑗2𝐿𝑖𝑠𝑡 𝐝𝐨 

𝐢𝐟 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 < rotateProbability(𝑗1, 𝑗2) 𝐭𝐡𝐞𝐧 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡2𝐷𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦 ← get2Defficacy(𝑎𝑛𝑔𝑙𝑒 = 0) 

𝐬𝐞𝐭 𝑆 = 0, 𝐶 = 0, 𝑄 = 0 

𝐟𝐨𝐫𝐞𝐚𝐜𝐡 pair of F and N datapackets 𝐝𝐨 

𝑎𝑛𝑔𝑙𝑒𝑠 ← generateJacobiRotations(𝑗1, 𝑗2) 

𝜇1, 𝜎1 ← withinPlaneTraitsF(𝑎𝑛𝑔𝑙𝑒𝑠) 

𝜇2, 𝜎2 ← withinPlaneTraitsN(𝑎𝑛𝑔𝑙𝑒𝑠) 

𝐜𝐨𝐦𝐩𝐮𝐭𝐞 𝑆 ← scoringFunct(𝑆, 𝜇1, 𝜎1, 𝜇2, 𝜎2) 

𝐜𝐨𝐦𝐩𝐮𝐭𝐞 𝐶 ← consensus(𝐶, 𝜇1, 𝜎1, 𝜇2, 𝜎2) 

𝐜𝐨𝐦𝐩𝐮𝐭𝐞 𝑄 ← clusterQuality(𝑄, 𝜇1, 𝜎1, 𝜇2, 𝜎2) 

𝑏𝑒𝑠𝑡𝐴𝑛𝑔𝑙𝑒 ← max2DefficacyAngle(𝑆, 𝐶, 𝑄, 𝑎𝑛𝑔𝑙𝑒𝑠) 

𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦2𝐷 ← get2Defficacy(𝑏𝑒𝑠𝑡𝐴𝑛𝑔𝑙𝑒) 

𝐢𝐟 𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦2𝐷 > 𝑐𝑢𝑟𝑟𝑒𝑛𝑡2𝐷𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦 𝐭𝐡𝐞𝐧 

𝐮𝐩𝐝𝐚𝐭𝐞 𝑈 ← spin 𝑗1 and 𝑗2 by 𝑏𝑒𝑠𝑡𝐴𝑛𝑔𝑙𝑒 

𝑚𝑜𝑑𝑒𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 ← getImportanceSamplingWeight() 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← getBasisSpecturm(𝑈, 𝑡𝑟𝑎𝑖𝑡𝑠𝐹, 𝑡𝑟𝑎𝑖𝑡𝑠𝑁) 

𝑛𝑒𝑤𝐸 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑠𝑢𝑙𝑡𝑠. 𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦 

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← checkConvergence(𝑛𝑒𝑤𝐸, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐸) 

𝑠𝑝𝑙𝑜𝑐𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑠𝑢𝑙𝑡𝑠 

 

Mode efficacy increases when the mode can either resolve differences or similarities between func-
tional and nonfunctional data streams, which respectively occur when 𝑆(𝑚) ≥ 𝑆𝑜 or 𝑆(𝑚) < 𝑆𝑜.
Modes that discriminate between functional and nonfunctional data streams are called d-modes;
conversely, modes that quantify similarity through indifference are called i-modes. As orthogonal

226



https://www.oajaiml.com/ | December-2021 JOHN PATTERSON, ET AL.

rotations of the basis vectors are performed, the efficacy of some modes may increase at the expense
of others, creating a multi-objective optimization problem [17-19]. As optimization proceeds, 𝑆(𝑚)
is bifurcated away from 𝑆𝑜 while consensus and MFSP cluster quality are improved in relevant
emergent properties. The collection of all modes defines an ortho normal basis which grounds
the perception of a multivariate hypothesis. The consistency of a proposed hypothesis across the
data is evaluated using the decision triad. This triad requires simultaneously exceeding minimum
thresholds for selection power (triad member 1), consensus power (triad member 2) and MFSP
cluster quality (triad member 3) in order to declare a mode as either a d-mode or i-mode; otherwise,
the mode is considered undetermined (u-mode).

The process of collapsing high-dimensional data onto a line for a mode projection represents a
tremendous loss of information in exchange for an immense gain in specificity. Although no
information is lost when using a complete ortho normal basis, how information is distributed is not
unique. Eachmode ismapped to a perceptronwhich is governed by a RectifyingAdaptive Nonlinear
Unit (RANU). For the 𝑚-th mode, when 𝑆(𝑚) > 𝑆𝑜 this forms a data-driven hypothesis that there
is a difference between functional and nonfunctional data streams. Conditional upon a statistically
significant consensus, the proposed hypothesis is confirmed when the quality of clustering within
the MFSP for a d-mode is positive (𝑄𝑑>0) . Upon confirmation, mode efficacy increases through
Eq. 2 to create a stronger belief supported by the observed projected data. Conversely, if the quality
of clustering within theMFSP for a d-mode is negative (𝑄𝑑<0), the proposed hypothesis is rejected,
and mode efficacy decreases through Eq. 2 using a reverse bias. An analogous process is applied to
i-modes. Themulti-objective optimization is then carried out simultaneously over all modes through
competitive learning, where the recurrent NNwill have an abundance of diverse perspectives across
the RANUs during data exploration, as depicted in FIGURE 2.

The proportion of modes that describe how similar or different data streams appear depends on
the perspective of finding differences or similarities more important. To bias importance, relative
weights in a RANU are adjusted. For predisposed perspectives, reverse biases are introduced to
reduce efficacy when unwanted results are found. In this work, five bias-cases are considered:
predisposed bias toward i-modes (−2), weak bias toward i-modes (0−), unbiased (0), weak bias
toward d-modes (0+) and predisposed bias toward d-modes (+2). The 0− bias sets 𝑟𝑑 (𝑥) → 1

10𝑟𝑑 (𝑥)
and the 0+ bias sets 𝑟𝑖 (𝑥) → 1

10𝑟𝑖 (𝑥). A bias of (−2, +2) introduces an indiscriminate fixed level of
reverse bias when a (d-mode, i-mode) is found since a predisposed perspective is not data-driven.
It is worth noting that bias cases of −1 and +1 exist in SPLOC. These biases are not considered here
because they are adaptive. The −1 and +1 cases start like their 0− and 0+ counterparts. However,
as more (i-modes, d-modes) are discovered, the scale factor relaxes from 1

10 to 1, corresponding to
the unbiased case.

2.3 Subspace Comparison

The projection spaces obtained by SPLOC were compared by computing the mean square inner
product (MSIP) between basis sets. The MSIP between two subspaces𝑈 and 𝑉 spanned by vectors
®𝑢 and ®𝑣 is given by

𝑀𝑆𝐼𝑃 (𝑈,𝑉) = 1
max[dim(𝑈), dim(𝑉)]

∑
®𝑢∈𝑈

∑
®𝑣∈𝑉

( ®𝑢 · ®𝑣)2. (3)
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3. RESULTS

In FIGURE 3, panels (a) and (b) show a typical MFSP for a d-mode and i-mode. These MFSPs
will yield a positive and negative cluster quality when the selection power for the mode is greater
than the reference value, 𝑆𝑜. However, the same MFSPs will yield a negative and positive cluster
quality when the selection power for the mode is less than 𝑆𝑜. The sign of the cluster quality is a bias
based on observation. If selection power suggests a projection direction will discriminate between
functional and nonfunctional molecules, and the MFSP shows poor clustering, then the proposed
direction is a mistake, and alternative projections will be sought. Otherwise, good clustering con-
firms the projection direction is correct, and after some fine tuning the d-mode will be locked in
place once it cannot increase efficacy at the expense of any other mode.

For each bias-case, the average numbers of d-modes, u-modes and i-modes are shown in FIGURE 3
(c-f). The number of i-modes forming the indifference subspace is strongly dependent on the bias,
while the number of d-modes forming the discriminant subspace is dramatically affected only for
the extreme bias toward i-modes by penalizing d-modes. Importantly, the number of d-modes
found with 0−, 0, 0+ and +2 bias was approximately the same. This indicates that SPLOC does
not overestimate the discriminate subspace in the presence of a large statistical sample size. In
contrast, more similarity can be found using a perspective where differences are considered less
important.

Figure 3: (a) MFSP for an example d-mode (b) MFSP for an example i-mode (c) EbL vs Fbcmodes
(d) EbL vs abF modes (e) EbL vs FbF modes (f) EbL vs All modes. Shown for each
training scenario are the averages from 100 replicates for extracted D, U, I modes with
standard error bars. The FIGURE legend of (c) applies to (d), (e), and (f).

The dynamical motions of the molecules are readily interpretable through the discriminant and
indifference subspaces, where the emergent properties of aMFSP showwhich molecules are similar
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Figure 4: The dRMSF of each molecule is shown for the unbiased case under four training
scenarios. The functional molecules included EbL, while the nonfunctional molecules
included: (a) Fbc (b) abF (c) FbF (d) all others. Different molecular types with similar
dRMSF are grouped by color in each panel. There are several clear differences in dRMSF
between functional and nonfunctional groups at certain atoms. The inset highlights these
atoms in red.

or different. The d-modes and i-modes are used to project the original data into the discriminant
or indifference subspaces. The concept of functional dynamics is meaningful as the dynamical
motions projected into the discriminate subspace identifies likely functional mechanisms, whereas
the extracted features from most other types of NN are usually obfuscated.

A commonway to characterize atomic motion is through the root mean square fluctuations (RMSF).
When atomic motions are first projected with d-modes or i-modes, a dRMSF or iRMSF is con-
structed. Information contained in dRMSF and iRMSF is readily mapped to specific atoms, which
helps interpret mechanisms responsible for functional dynamics. When comparing iRMSF across all
molecules, the indifference subspace identified conserved motions across all molecules as expected.
However, unexpectedly the iRMSF were similar across all training scenarios (data not shown).
More interestingly, dRMSF highlights differences between functional and nonfunctional molecules
shown in FIGURE 4.

The differences in dRMSF depend on training scenarios. When a group of similar nonfunctional
molecules are compared to the functional molecules, many differences are uncovered, but only a
subset of these differences may be responsible for functional dynamics. Over the four training
scenarios, as more diverse nonfunctional molecules were included in the training scenario, the
number of d-modes decreased because the essential elements of function are being uncovered. An
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over zealous working hypothesis will be associated with a larger discriminant subspace, as some
differences are irrelevant to function. As reported previously [15], the working hypothesis narrows
as more constraints are introduced as diverse molecules are contrasted. This is a consequence of an
inductive reasoning where a hypothesis is proposed based on the consistency of examples observed,
and when contradicting data is found, a revision of the hypothesis is often necessary.

Interpreting data and hypothesis building in PP is exemplified in FIGURE 4 (a), where EbL is
compared with Fbc. Major differences in dRMSF are found at atoms {2,5,19,22,26,29}. Within
functional molecules, atoms {5,19,29} make up the extended signature in domain 1, and atoms
{2,22,26} make up the linear signature in domain 3. By construction, these two domains are
precisely where differences between the functional and nonfunctional molecules should be found
for optimal discrimination. The dRMSF for all nonfunctional molecules at domain 1 atoms show
strong similarities to each other, and differences to the functional molecules, which indicates a
conserved discriminating feature. The differences at domain 3 are not universal as demonstrated
by the segmented dRMSF in nonfunctional molecules. The FbL and FbT molecules show more
similar dRMSF to the functional class because they share constraints in this domain, whereas FbF
molecules show much higher fluctuation because there are no extra constraints. In this case SPLOC
learned that the main differentiating feature between functional and nonfunctional molecules is the
F versus E conformation in domain 1. An additional hypothesis that reflects differences between L
or T versus F conformations in domain 3 was also proposed.

By keeping a complete set of basis vectors, information is never lost regardless of bias, simply
interpreted differently by the model via perspective. MSIP was used to compare the similarity in
SPLOC solutions. In FIGURE 5 (a-d) the unbiased SPLOC mode is compared with the various
biased subspace results for D, U, and I modes. FIGURE 5 (a) and (c) show that information in
promiscuous u-modes can be rotated into and out of the D an I spaces, with a degree of difficulty
depending on the bias. Specifically with bias 0+, information is exchanged between the U and I
space and with bias 0− there is a weak exchange of information between the D and U spaces. This
is due to the change in perspective to favor discriminant or indifferent features. Comparing extreme
biases with the unbiased case in FIGURE 5 (b) and (d), all relevant information is lumped into the
discriminant or indifferent subspace, depending on the extreme.

Significant d-modes can be extracted from the U space, but when aggressively searching for i-
modes, information that was discriminant can be forced into I space, as shown in FIGURE5 (d). This
clearly demonstrates that based on perspective, data that looks different under one bias now looks
the same under another bias. It is worth pointing out that the MSIP analysis presented here is not
saying the entire mode switches from one subspace to another, but that various linear combinations
of modes from one space switches out from one space and into another. These type of alternative
views will increase as the number of df increases. When comparing the biases −2 and +2, 6 (e), little
information is shared between D and I modes, as the algorithm aggressively tries to fill either the
D space or the I space, however, their U spaces are quite similar. The u-modes with low statistical
support may facilitate alternate hypotheses across nonfunctional molecules that behave differently
from one another.

FIGURE 5 (f), compares the SPLOC solutions across the different experiments. The D spaces
for Fbc, abF, or FbF training sets were very consistent. When all molecules other than EbL were
considered nonfunctional, the decrease in number of d-modes due to SPLOCs refined hypothesis of
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Figure 5: A collection of MSIP plots show subspace comparisons between SPLOC solutions
obtained using different bias modes and training scenarios. In panels a-e, all plots were
obtained using EbL as functional and all othermolecules as nonfunctional. (a) unbiased vs
weakly positively biased (b) unbiased vs strongly positively biased (c) unbiased vs weakly
negatively biased (d) unbiased vs strongly negatively biased (e) strongly negatively biased
vs strongly positively biased. In (f) a comparison between the projection spaces of all
training models is shown for the unbiased case.

functionality led to a decrease in D space MSIP with the other training sets. The D space obtained
with all biases except for (−2) captured the functional dynamics faithfully needed for accurate
classification.

4. CONCLUSION

For the synthetic data set analyzed here, SPLOC successfully identified the major differences be-
tween functional and nonfunctional molecules, and found that the shared conserved properties
across all molecules are markedly high. For extreme preconceived perspectives that either discount
the possibility of finding differences or similarities, SPLOC could neither confirm or deny such a
belief, because data supporting the contrary-view was not taken into account due to the predisposed
bias. However, this latent information is retained in the u-modes that can be extracted to refine the
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working hypothesis once supporting data for the contrary view is taken into account. Outside of
these extreme cases, in general the biasing for refining a working hypothesis depends on whether
more data is found to support the proposed claim either through augmenting training data with
more consistent examples or by optimizing the vantage point as basis vectors rotate. In SPLOC,
the recurrent NN is comprised of a heterogenous set of perceptrons, where each perceptron has
a custom rectifying unit that adapts to the data that is observed through exploration. Mistakes are
found through inconsistencies, where parts of themultivariate hypothesis are rejected, which leads to
refinement. These results suggest that an abundance of perspectives across perceptions comprising
a NN is a good strategy to achieve robust solutions with maximum consistency for an objective
analysis that minimizes preconceived prejudices with minimal risk of missing latent features.

All relevant code to SPLOC can be found at https://github.com/BioMolecularPhysicsGroup-UNCC/
MachineLearning/tree/master/SPLOC. The data set for the toy molecules can be downloaded in full
at https://zenodo.org/record/4465089#.YaovumDMKl5.
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